Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 152-159    DOI: 10.11868/j.issn.1001-4381.2017.000065
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
多重结构Ti-B4C/Al2024复合材料的组织和力学性能
李惠, 肖文龙, 张艺镡, 马朝利
北京航空航天大学 材料科学与工程学院 空天先进材料与服役教育部重点实验室, 北京 100191
Microstructure and mechanical properties of Ti-B4C/Al2024 composite with hybrid structure
LI Hui, XIAO Wen-long, ZHANG Yi-tan, MA Chao-li
Key Laboratory of Aerospace Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(25150 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了研究多重结构对铝基复合材料力学性能的影响,将气雾化态Al2024合金粉末与球磨不同时间的Ti-10%(质量分数,下同)B4C复合粉末混合,采用热压烧结和热挤压的方法制备多重结构Ti-B4C/Al2024复合材料。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和拉伸试验机对不同材料的显微组织与力学性能进行观察和测试,并对多重结构复合材料的强韧化行为进行讨论。结果表明:Ti-B4C/Al2024复合材料多重结构包括基体Al2024、核壳结构Ti/Al18Ti2Mg3组织和B4C颗粒。向Al2024中加入5%预先球磨6h后的Ti-B4C粉末时,其屈服强度从107MPa提高到122MPa,并且表现出与热挤压Al2024合金几乎相同的伸长率。当球磨时间延长至12h时,试样5TB-12h的伸长率可达到16.4%。然而,复合材料的伸长率随着Ti-B4C添加量的增加而降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李惠
肖文龙
张艺镡
马朝利
关键词 金属基复合材料铝合金多重结构力学性能    
Abstract:In order to study the effect of hybrid structure on the mechanical properties of aluminum matrix composites. The gas-atomized Al2024 powders were mechanically blended with Ti-10% (mass fraction) B4C powders by ball milling for different time, and then compacting the powders via hot press sintering and hot extrusion to fabricate the hybrid structured Ti-B4C/Al2024 composite. The microstructure and mechanical properties of different materials were observed and tested by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile testing machine. The strengthening and toughening behavior of hybrid structured composites were further discussed. The results show that the hybrid structured Ti-B4C/Al2024 composite consists of Al2024 matrix, core-shell structured Ti/Al18Ti2Mg3 and B4C particles. With the addition of 5% Ti-B4C hybrid powder after ball milling for 6h, the yield strength increases from 107MPa to 122MPa, and the composite exhibits almost the same elongation as that of the hot extruded Al2024 alloy. When the milling time is extended to 12h, the elongation of the sample 5TB-12h can reach 16.4%. However, the elongation of the composites decreases with the increase of Ti-B4C.
Key wordsmetal matrix composites    aluminum alloy    hybrid structure    mechanical property
收稿日期: 2017-01-14      出版日期: 2019-04-19
中图分类号:  TB331  
通讯作者: 肖文龙(1982-),男,博士,副教授,研究方向:轻质高强合金,联系地址:北京市海淀区学院路37号北京航空航天大学材料科学与工程学院(100191),E-mail:wlxiao@buaa.edu.cn     E-mail: wlxiao@buaa.edu.cn
引用本文:   
李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
LI Hui, XIAO Wen-long, ZHANG Yi-tan, MA Chao-li. Microstructure and mechanical properties of Ti-B4C/Al2024 composite with hybrid structure. Journal of Materials Engineering, 2019, 47(4): 152-159.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000065      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/152
[1] FLOM Y,ARSENAULT R J.Interfacial bond strength in an aluminium alloy 6061-SiC composite[J].Materials Science and Engineering,1986,77:191-197.
[2] HAN B Q,HUANG J Y,ZHU Y T,et al.Effect of strain rate on the ductility of a nanostructured aluminum alloy[J].Scripta Materialia,2006,54(6):1175-1180.
[3] 杨旭东,邹田春,陈亚军,等.碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J].材料工程,2016,44(7):67-72. YANG X D,ZOU T C,CHEN Y J,et al.Fabrication and mechanical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J].Journal of Materials Engineering,2016,44(7):67-72.
[4] 燕绍九,陈翔,洪起虎,等.石墨烯增强铝基纳米复合材料研究进展[J].航空材料学报,2016,36(3):57-70. YAN S J,CHEN X,HONG Q H,et al.Graphene reinforced alum-inum matrix nanocomposites[J].Journal of Aeronautical Mater-ials,2016,36(3):57-70.
[5] KAI W,YANG J M,HARRIGAN W C.Mechanical behavior of B4C particulate-reinforced 7091 aluminum composite[J].Scripta Metallurgica,1989,23(8):1277-1280.
[6] PYZIK A J,BEAMAN D R.Al-B-C phase development and effects on mechanical properties of B4C/Al-derived composites[J].Journal of the American Ceramic Society,1995,78(2):305-312.
[7] 郑瑞晓,张艺镡,马朝利,等.多重纳米结构轻质高强铝基复合材料的制备和组织性能[J].航空学报,2014,35(10):2802-2812. ZHENG R X,ZHANG Y T,MA C L,et al.Preparation and investigation of microstructure and mechanical properties of ultra-high strength Al alloy matrix composites with hybrid nanostru-cture[J].Acta Aeronautica et Astronautica Sinica,2014,35(10):2802-2812.
[8] NIE C Z,GU J J,LIU J L,et al.Production of boron carbide reinforced 2024 aluminum matrix composites by mechanical alloying[J].Materials Transactions,2007,48(5):990-995.
[9] YE J C,HAN B Q,LEE Z,et al.A tri-modal aluminum based composite with super-high strength[J].Scripta Materialia,2005,53(5):481-486.
[10] JIANG L,LI Z,FAN G,et al.A flake powder metallurgy approach to Al2O3/Al biomimetic nanolaminated composites with enhanced ductility[J].Scripta Materialia,2011,65(5):412-415.
[11] QIN S Y,ZHANG G D.Preparation of high fracture performance SiCp-6061Al/6061Al composite[J].Materials Science and Engin-eering:A,2000,279(1/2):231-236.
[12] JIANG L,YANG H,YEE J K,et al.Toughening of aluminum matrix nanocomposites via spatial arrays of boron carbide spherical nanoparticles[J].Acta Materialia,2016,103:128-140.
[13] GAO F,XU C,ZHANG H P,et al.Core-shell structured Al-matrix composite with enhanced mechanical properties[J].Materials Science and Engineering:A,2016,657:64-70.
[14] PANDEY A B,MAJUMDAR B S,MIRACLE D B.Effect of aluminum particles on the fracture toughness of a 7093/SiC/15p composite[J].Materials Science and Engineering:A,1999,259(2):296-307.
[15] KERIMOV K M,DUNAEV S F,SLJUSARENKO E M.Investigation of the structure of ternary phases in AlMgTi,AlMgV and AlMgCr systems[J].Journal of the Less Common Metals,1987,133(2):297-302.
[16] ZHANG Q,XIAO B L,MA Z Y.In situ formation of various intermetallic particles in Al-Ti-X(Cu,Mg) systems during friction stir processing[J].Intermetallics,2013,40:36-44.
[17] JAFARI M,ENAYATI M H,ABBASI M H,et al.Thermal stability and structural changes during heat treatment of nanostructured Al2024 alloy[J].Journal of Alloys and Compo-unds,2009,478(1):260-264.
[18] KERIMOV K M,DUNAEV S F.The M2Mg3Al18 phase in Al-Mg-transition metal systems[J].Journal of the Less Common Metals,1989,153(2):267-273.
[19] WANG Y C,SONG M, NI S,et al.In situ formed core-shell structured particle reinforced aluminum matrix composites[J]. Materials & Design,2014,56:405-408.
[20] ZHANG F Y,YAN M F,YOU Y,et al.Prediction of elastic and electronic properties of cubic Al18Ti2Mg3 phase coexisting with Al3Ti in Al-Ti-Mg system[J].Physica B:Condensed Matter,2013,408:68-72.
[21] THAM L M,GUPTA M,CHENG L.Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites[J].Acta Materialia,2001,49(16):3243-3253.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯昊, 符殿宝, 程佳乐, 唐寅林, 陈俊锋, 王晨, 邹林池. 压缩预变形对7050铝合金非等温时效析出行为的影响[J]. 材料工程, 2020, 48(9): 107-114.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 段晓鸽, 江海涛, 米振莉, 王丽丽, 李萧. 轧制方式对6016铝合金薄板组织和塑性各向异性的影响[J]. 材料工程, 2020, 48(8): 134-141.
[5] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[6] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[7] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[8] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[9] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[10] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[11] 李亚, 邓运来, 张劲, 田爱琴, 张勇. 7050铝合金第二相溶解行为[J]. 材料工程, 2020, 48(4): 116-122.
[12] 安立辉, 苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程, 2020, 48(4): 123-130.
[13] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[14] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[15] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn