Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (12): 30-36    DOI: 10.11868/j.issn.1001-4381.2017.000102
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响
杜军1, 宋永明1,*(), 张志军1, 房轶群1, 王伟宏1, 王清文1,2
1 东北林业大学 生物质材料科学与技术教育部重点实验室, 哈尔滨 150040
2 华南农业大学 材料与能源学院, 广州 510642
Influence of Maleic Anhydride/Glycidyl Methacrylate Cografted Polylactic Acid on Properties of Wood Flour/PLA Composites
Jun DU1, Yong-ming SONG1,*(), Zhi-jun ZHANG1, Yi-qun FANG1, Wei-hong WANG1, Qing-wen WANG1,2
1 Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
2 College of Materials and Energy, South China Agriculture University, Guangzhou 510642, China
全文: PDF(3464 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用熔融接枝法分别制备马来酸酐接枝聚乳酸、甲基丙烯酸缩水甘油酯接枝聚乳酸和马来酸酐/甲基丙烯酸缩水甘油酯共接枝聚乳酸,并利用红外光谱对接枝共聚物进行结构表征。分别以三种接枝共聚物为相容剂,采用注塑成型制备了木粉/PLA复合材料。利用扫描电子显微镜(SEM)对复合材料的断面形貌进行微观分析,结果表明,加入不同接枝共聚物后木粉/PLA复合材料两相看不出明显相界面,界面相容性得到改善。对不同接枝共聚物制备的复合材料的力学性能、加工流动性能和动态流变性能测定的结果显示,加入MAH/GMA共接枝聚乳酸后的木粉/PLA复合材料和未添加相容剂的复合材料相比,拉伸强度和冲击强度分别提高了9.54%和7.23%,复合体系的平衡扭矩和剪切热提高,储能模量及复数黏度均增大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杜军
宋永明
张志军
房轶群
王伟宏
王清文
关键词 聚乳酸马来酸酐甲基丙烯酸缩水甘油酯聚乳酸接枝共聚物相容性    
Abstract

Graft copolymers of PLA-g-MAH, PLA-g-GMA and PLA-co-MAH/GMA were prepared by means of melt grafting. The structure of the graft copolymers were characterized by FTIR.Wood flour/PLA composites were prepared by injection molding with three kinds of graft copolymers as compatibilizers, and the fractured morphology of composites was investigated by scanning electron microscope (SEM). Results show that there is no obvious phase interface between wood flour and PLA, which indicating the interfacial compatibility of wood flour/PLA composites is improved after adding different graft copolymers. The determination results of mechanical properties, processing flowability and dynamic rheological property of composites prepared with different graft copolymers reveal that, compared to the composite without compatibilizer, the tensile strength and impact strength of wood flour/PLA composites are increased by 9.54% and 7.23% respectively, and the equilibrium torque, shear heat, storage modulus and complex viscosity are all increased after adding maleic anhydride/glycidyl methacrylate cografted polylactic acid.

Key wordspolylactic acid    maleic anhydride    glycidyl methacrylate    PLA grafted copolymer    compati-bility
收稿日期: 2017-01-22      出版日期: 2017-12-19
中图分类号:  TB332  
基金资助:省留学归国人员科学基金(LC2015011);中国博士后科学基金特别资助(2014T70303);国家自然科学基金项目(31100425)
通讯作者: 宋永明     E-mail: ymsong@nefu.edu.cn
作者简介: 宋永明(1978-), 男, 副教授, 博士, 研究方向为生物质聚合物复合材料, 联系地址:黑龙江省哈尔滨市香坊区和兴路51号东北林业大学生物质材料科学与技术教育部重点实验室(150040), E-mail:ymsong@nefu.edu.cn
引用本文:   
杜军, 宋永明, 张志军, 房轶群, 王伟宏, 王清文. MAH/GMA共接枝聚乳酸对木粉/PLA复合材料性能的影响[J]. 材料工程, 2017, 45(12): 30-36.
Jun DU, Yong-ming SONG, Zhi-jun ZHANG, Yi-qun FANG, Wei-hong WANG, Qing-wen WANG. Influence of Maleic Anhydride/Glycidyl Methacrylate Cografted Polylactic Acid on Properties of Wood Flour/PLA Composites. Journal of Materials Engineering, 2017, 45(12): 30-36.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000102      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/30
Fig.1  聚乳酸接枝共聚物的FTIR谱图
Fig.2  PLA,PLA-g-GMA及PLA-co-MAH/GMA的FTIR谱图
Fig.3  PLA熔融接枝MAH和GMA的反应路径
Fig.4  不同相容剂制备木粉/PLA复合材料的SEM照片
(a)WP;(b)WPMD;(c)WPGD;(d)WPMGD
Fig.5  PMGD对木粉/PLA复合体系的增容作用机理
Sample Tensile strength/MPa Flexural strength/MPa Elongation at break/% Impact strength/(kJ·m-2)
WP 49.26±2.14 105.70±1.56 4.43±0.33 15.06±0.86
WPMD 49.33±2.35 104.58±0.68 4.05±0.22 14.68±0.88
WPGD 51.33±1.12 105.99±0.61 4.48±0.18 15.42±1.35
WPMGD 53.96±1.12 109.74±0.41 4.52±0.23 16.15±1.01
Table 1  不同相容剂制备木粉/PLA复合材料的力学性能
Fig.6  不同相容剂制备木粉/PLA复合体系扭矩(a)和温度(b)随时间变化曲线
Sample Te/(N·m) ΔT/℃
WP 6.0 11.6
WPMD 5.7 13.4
WPGD 5.9 11.9
WPMGD 6.1 13.8
Table 2  不同相容剂制备木粉/PLA复合体系的平衡扭矩和剪切热
Fig.7  不同相容剂制备木粉/PLA复合材料的储能模量G′(a)和复数黏度η*(b)与频率的关系
1 王清文, 王伟宏, 宋永明, 等. 木塑复合材料与制品[M]. 北京: 化学工业出版社, 2007.
1 WANG Q W , WANG W H , SONG Y M , et al. Wood plastic composite materials and products[M]. Beijing: Chemical Industry Press, 2007.
2 REDDY M M , VIVEKANANDHAN S , MISRA M , et al. Biobased plastics and bionanocomposites:current status and future opportunities[J]. Progress Polymer Science, 2013, 38 (10): 1653- 1689.
3 RAQUEZ J M , HABIBI Y , MURARIU M , et al. Polylactide (PLA)-based nano-composites[J]. Progress Polymer Science, 2013, 38 (10): 1504- 1542.
4 陶岩, 王辉, 邸明伟. 水环境下等离子体处理聚乙烯木塑复合材料表面性质的演变[J]. 材料工程, 2012, (10): 94- 98.
4 TAO Y , WANG H , DI M W . Evolution of surface properties for plasma treated wood/polyethylene composites under water soaking[J]. Journal of Materials Engineering, 2012, (10): 94- 98.
5 BAILLIE C E . Eco-composites[J]. Composites Science and Technology, 2003, 63 (9): 1223- 1224.
doi: 10.1016/S0266-3538(03)00090-3
6 MARTIN O , AVEROUS L . Poly(lactic acid):plasticization and properties of biodegradable multiphase systems[J]. Polymer, 2001, 42 (14): 6209- 6219.
doi: 10.1016/S0032-3861(01)00086-6
7 杨继年, 杨双萍, 王闯, 等. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44 (11): 61- 65.
doi: 10.11868/j.issn.1001-4381.2016.11.010
7 YANG J N , YANG S P , WANG C , et al. Fabrication and properties of poly (lactic acid) hybrid composites synergistic toughened by ultra-fine barium sulfate and light calcium carbonate[J]. Journal of Materials Engineering, 2016, 44 (11): 61- 65.
doi: 10.11868/j.issn.1001-4381.2016.11.010
8 RASAL R M , JANORKAR A V , HIRT D E . Poly(lactic acid) modifications[J]. Progress in Polymer Science, 2010, 35 (3): 338- 356.
doi: 10.1016/j.progpolymsci.2009.12.003
9 PILLA S , GONG S , O'NEILL E , et al. Polylactide-pine wood flour composites[J]. Polymer Engineering & Science, 2008, 48 (3): 578- 587.
10 WANG Y L , QI R R , CHENG X , et al. Effects of coupling agent and interfacial modifiers on mechanical properties of poly(lactic acid) and wood flour biocomposites[J]. Iranian Polymer Journal, 2011, 20 (4): 281- 294.
11 AVELLA M , BOGOEVA-GACEVA G , BUŽAROVSKA A , et al. Poly (lactic acid)-based biocomposites reinforced with kenaf fibers[J]. Journal of Applied Polymer Science, 2008, 108 (6): 3542- 3551.
12 于人同, 方显力, 张云灿, 等. 反应挤出法制备马来酸酐接枝聚乳酸[J]. 高分子材料科学与工程, 2009, 25 (3): 85- 88.
12 YU R T , FANG X L , ZHANG Y C , et al. Preparation and properties of PLA grafted with maleic anhydride through reactive extrusion[J]. Polymer Materials Science & Engineering, 2009, 25 (3): 85- 88.
13 ZHU R , LIU H Z , ZHANG J W . Compatibilizing effects of maleated poly(lactic acid)(PLA) on properties of PLA/Soy protein composites[J]. Industrial & Engineering Chemistry Research, 2012, 51 (22): 7786- 7792.
14 CSIKÍSÁ , FALUDI G , DOMJÁN A , et al. Modification of interfacial adhesion with a functionalized polymer in PLA/wood composites[J]. European Polymer Journal, 2015, 68 (Suppl 1): 592- 600.
15 LIU J S , JIANG H H , CHEN L B . Grafting of glycidyl methacrylate onto poly(lactide) and properties of PLA/Starch blends compatibilized by the grafted copolymer[J]. Journal of Polymers and the Environment, 2012, 20 (3): 810- 816.
doi: 10.1007/s10924-012-0438-1
16 谢振华, 储富祥, 王春鹏, 等. 聚乳酸反应接枝甲基丙烯酸缩水甘油酯及其增容作用[J]. 高分子材料科学与工程, 2015, 31 (5): 125- 128.
16 XIE Z H , CHU F X , WANG C P , et al. Preparation of poly(lactic acid) grafted with glycidyl methacrylate through reactive extrusion and its compatibilization[J]. Polymer Materials Science And Engineering, 2015, 31 (5): 125- 128.
17 MOHANTY S , NAYAK S K . Effect of poly (lactic acid)-graft-glycidyl methacrylate as a compatibilizer on properties of poly (lactic acid)/banana fiber biocomposites[J]. Polymers for Advanced Technologies, 2016, 27 (4): 515- 524.
18 WU C S . Renewable resource-based composites of recycled natural fibers and maleated polylactide bioplastic:characterization and biodegradability[J]. Polymer Degradation and Stability, 2009, 94 (7): 1076- 1084.
doi: 10.1016/j.polymdegradstab.2009.04.002
19 XU T Q , TANG Z B , ZHU J . Synthesis of polylactide-graft-glycidyl methacrylate graft copolymer and its application as a coupling agent in polylactide/bamboo flour biocomposites[J]. Journal of Applied Polymer Science, 2012, 125 (Suppl 2): 622- 627.
20 王霞, 李浩, 宋永明, 等. 木粉/聚丙烯复合材料的流变性能研究[J]. 西南林业大学学报, 2016, 36 (4): 145- 151.
20 WANG X , LI H , SONG Y M , et al. Research on rheological properties of wood flour/polypropylene composites[J]. Journal of Southwest Forestry University, 2016, 36 (4): 145- 151.
21 欧荣贤, 王清文. 马来松香对木粉/HDPE复合材料流变性质的影响[J]. 林业科学, 2009, 45 (5): 126- 131.
doi: 10.11707/j.1001-7488.20090519
21 OU R X , WANG Q W . Effects of maleic rosin on the rheological properties of wood flour/HDPE composites[J]. Scientia Silvae Sinicae, 2009, 45 (5): 126- 131.
doi: 10.11707/j.1001-7488.20090519
[1] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[2] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
[3] 范泽文, 赵新宇, 邱帅, 王艳, 郭静, 权慧欣, 徐兰娟. 聚乳酸/聚乙二醇/羟基磷灰石多孔骨支架的3D打印制备及其生物相容性[J]. 材料工程, 2021, 49(4): 135-141.
[4] 毛龙, 刘小超, 谢斌, 吴慧青, 刘跃军. 植酸-金属离子螯合物改性层状黏土及其在聚己内酯中的增强与抗菌效应研究[J]. 材料工程, 2021, 49(2): 127-135.
[5] 孙文昕, 樊丽君, 郑钟印, 邹玉红, 田景睿, 曾荣昌. 医用金属表面含锶涂层耐蚀性和生物相容性研究进展[J]. 材料工程, 2021, 49(12): 72-82.
[6] 李梦娟, 韩荣, 张静雅, 许永正, 黄梦媛, 贡浩天, 吴采芩. 海水可降解Fe3O4@PVA/PLGA复合膜的制备及性能[J]. 材料工程, 2021, 49(12): 130-138.
[7] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[8] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[9] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[10] 舒华金, 吴春萱, 杨康, 刘廷武, 李晨, 曹传亮. 快速膨胀海藻酸钠/二氧化硅纤维复合支架的制备及其快速止血功能的应用[J]. 材料工程, 2019, 47(12): 124-129.
[11] 沈学霖, 朱光明, 杨鹏飞. 生物医用形状记忆高分子材料[J]. 材料工程, 2017, 45(7): 111-117.
[12] 何聪, 欧宝立, 李政峰. 氧化石墨烯对聚丙烯/尼龙6两组分聚合物的增容作用[J]. 材料工程, 2017, 45(3): 13-16.
[13] 杨继年, 杨双萍, 王闯, 邵凯运, 江鹏飞, 周辉. 超细硫酸钡和轻质碳酸钙协同增韧聚乳酸混杂材料的制备及性能[J]. 材料工程, 2016, 44(11): 61-65.
[14] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[15] 吴江渝, 何紫莹, 李秀辉. 改性高吸水树脂制备吸水膨胀橡胶及其性能[J]. 材料工程, 2014, 0(6): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn