Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 50-57    DOI: 10.11868/j.issn.1001-4381.2017.000114
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Co3O4中空纳米球的可控制备及气敏性能
阚侃1, 王珏1, 付东1, Sementsov YURII2, 宋美慧1, 林雨斐3, 史克英3
1. 黑龙江省科学院 高技术研究院, 哈尔滨 150020;
2. 乌克兰科学院 表面化学研究所, 基辅 03164;
3. 黑龙江大学 化学化工与材料学院, 哈尔滨 150080
Preparation of Co3O4 hollow nanospheres and gas sensing properties
KAN Kan1, WANG Jue1, FU Dong1, Sementsov YURII2, SONG Mei-hui1, LIN Yu-fei3, SHI Ke-ying3
1. Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150020, China;
2. Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine;
3. School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
全文: PDF(5832 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以碳纳米球为模板,采用硬模板法制得多孔Co3O4中空纳米球。分别采用SEM、XRD、FTIR、BET和XPS对Co3O4纳米球的形貌和结构进行表征。通过改变前驱体浓度和陈化反应时间调控Co3O4中空纳米球的空间结构及气敏性能。结果表明:在前驱体浓度为0.1mol/L、陈化时间为48h时,得到的Co3O4中空纳米球的表面呈疏松多孔结构。Co3O4中空纳米球直径约为500nm,由40nm的Co3O4纳米粒子组成。室温下,由该材料组装的气敏传感器对浓度为100×10-6~0.5×10-6的NH3有较好的气敏性能;对浓度为100×10-6的NH3响应灵敏度高达155.8%,响应时间为1.3s。该气体传感器对NH3的最低检测限为0.5×10-6
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阚侃
王珏
付东
Sementsov YURII
宋美慧
林雨斐
史克英
关键词 四氧化三钴纳米球氨气气体传感器    
Abstract:The porous Co3O4 hollow nanospheres were synthesized via hard template method by a carbon spheres templated strategy. The morphology and structure of materials were studied by SEM, XRD, FTIR, BET and XPS. The structure and gas sensing properties of Co3O4 hollow nanospheres were controlled by changing the concentration of precursor and aging time. The results show that the Co3O4 hollow nanospheres with diameter of 500nm composed by 40nm Co3O4 nanoparticles can be synthesized with 0.1mol/L precursor and aging for 48h. The surface of nanospheres is porous structure. The synthesized Co3O4 hollow nanospheres sensor have good gas response to 100×10-6-0.5×10-6 NH3 at room temperature. The gas sensitivity to 100×10-6 NH3 reaches 155.8% and the response time is 1.3s. The limit level of this gas sensor to NH3 is 0.5×10-6.
Key wordsCo3O4    nanosphere    NH3    gas sensor
收稿日期: 2017-01-23      出版日期: 2019-01-16
中图分类号:  O643.3  
  O614.43  
通讯作者: 史克英(1965-),女,教授,博士生导师,从事石墨化碳复合材料的设计合成、气敏和水传感性能研究及石墨烯基纳米器件设计制备等,E-mail:shikeying2008@163.com     E-mail: shikeying2008@163.com
引用本文:   
阚侃, 王珏, 付东, Sementsov YURII, 宋美慧, 林雨斐, 史克英. Co3O4中空纳米球的可控制备及气敏性能[J]. 材料工程, 2019, 47(1): 50-57.
KAN Kan, WANG Jue, FU Dong, Sementsov YURII, SONG Mei-hui, LIN Yu-fei, SHI Ke-ying. Preparation of Co3O4 hollow nanospheres and gas sensing properties. Journal of Materials Engineering, 2019, 47(1): 50-57.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000114      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/50
[1] TANG Y L,LI Z J,MA J Y,et al. Highly sensitive room-temperature surface acoustic wave(SAW) ammonia sensors based on Co3O4/SiO2 composite films[J]. Journal of Hazardous Materials,2014,280(15):127-133.
[2] 卢少微,冯春林,聂鹏,等. 碳纳米管用于聚合物基复合材料健康监测的研究进展[J]. 航空材料学报,2015,35(2):12-20. LU S W,FENG C L,NIE P,et al. Progress on carbon nanotubes in health monitoring of polymer composites[J]. Journal of Aeronautical Materials,2015,35(2):12-20.
[3] NAGAI T,TAMURA S,IMANAKA N. Solid electrolyte type ammonia gas sensor based on trivalent aluminum ion conducting solids[J]. Sensors and Actuators B:Chemical,2010,147:735-740.
[4] YOON J W,LEE J H. Toward breath analysis on a chip for disease diagnosis using semiconductor-based chemiresistors:recent progress and future perspectives[J]. Lab on a Chip,2017,17(21):3537-3557.
[5] 薄小庆,刘唱白,何越,等. 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程,2014(8):86-89. BO X Q,LIU C B,HE Y,et al. Fabrication and gas sensing properties of porous ZnO nanorods[J]. Journal of Materials Engineering,2014(8):86-89.
[6] LI R,JIANG K,CHEN S,et al. SnO2/SnS2 nanotubes for flexible room-temperature NH3 gas sensors[J]. RSC Advances,2017,7(83):52503-52509.
[7] KANJWAL M A,SHEIKH F A,BARAKAT N A M,et al. Co3O4-ZnO hierarchical nanostructures by electrospinning and hydrothermal methods[J]. Applied Surface Science,2011,257(18):7975-7981.
[8] VARGHESE B,MUKHERJEE B,KARTHIK K R G,et al. Electrical and photoresponse properties of Co3O4 nanowires[J]. Journal of Applied Physics,2012,111(10):104306-104311.
[9] HU L,PENG Q,LI Y. Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion[J]. Journal of the American Chemical Society,2008,130(48):16136-16137.
[10] SUN C W,RAJASEKHARA S,CHEN Y J,et al. Facile synthesis of monodisperse porous Co3O4 microspheres with superior ethanol sensing properties[J]. Chemical Communications,2011,47(48):12852-12854.
[11] XUA J M,ZHANG J,WANG B B,et al. Shape-regulated synthesis of cobalt oxide and its gas-sensing property[J]. Journal of Alloys and Compounds,2015,619:361-367.
[12] NGUYEN H,SAFTY S A. Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors[J]. The Journal of Physical Chemistry C,2011,115(17):8466-8474.
[13] PATIL D,PATIL P,SUBRAMANIAN V,et al. Highly sensitive and fast responding CO sensor based on Co3O4 nanorods[J]. Talanta,2010,81(1/2):37-43.
[14] DENG J N,ZHANG R,WANG L L,et al. Enhanced sensing performance of the Co3O4 hierarchical nanorods to NH3 gas[J]. Sensors and Actuators B:Chemical,2015,209:449-455.
[15] HE T,CHEN D R,JIAO X L,et al. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size[J]. Langmuir,2004,20(19):8404-8408.
[16] WANG X,YU L,WU X L,et al. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties[J]. The Journal of Physical Chemistry C,2009,113(35):15553-15558.
[17] KIM M,PHAN V N,LEE K. Exploiting nanoparticles as precursors for novel nanostructure designs and properties[J]. Cryst Eng Comm,2012,14(22):7535-7548.
[18] NETHRAVATHI C,SEN S,RAVISHANKAR N,et al. Ferrimagnetic nanogranular Co3O4 through solvothermal decomposition of colloidally dispersed monolayers of α-cobalt hydroxide[J]. The Journal of Physical Chemistry B,2005,109(23):1468-11472.
[19] LI L,LIU M M,HE S J,et al. Freestanding 3D mesoporous Co3O4@carbon foam nanostructures for ethanol gas sensing[J]. Analytical Chemistry,2014,86(15):7996-8002.
[20] LÜ Y,ZHAN W,HE Y,et al. MOF-templated synthesis of porous Co3O4 concave nanotubes with high specific surface area and their gas sensing properties[J]. ACS Applied Materials Interfaces,2014,6(6):4186-4195.
[21] WANG L,DENG J,LOU Z,et al. Cross-linked p-type Co3O4 octahedral nanoparticles in 1D n-type TiO2 nanofibers for high-performance sensing devices[J]. Journal of Materials Chemistry A:2014,2(26):10022-10028.
[22] JUNG D,HAN M,LEE G S. Room-temperature gas sensor using carbon nanotube with cobalt oxides[J]. Sensors and Actuators B:Chemical,2014,204:596-601.
[23] BALOURIA V,SAMANT S,SINGH A,et al. Chemiresistive gas sensing properties of nanocrystalline Co3O4 thin films[J]. Sensors and Actuators B:Chemical,2013,176:38-45.
[1] 沈小群, 陈李, 李顺波, 徐溢. VOCs传感器敏感膜材料及敏感机理研究进展[J]. 材料工程, 2019, 47(11): 64-70.
[2] 刘唱白, 刘丽, 刘星熠. Al2O3掺杂ZnO微米花对丙酮超高灵敏度和优异选择性[J]. 材料工程, 2017, 45(2): 12-16.
[3] 薄小庆, 刘唱白, 何越, 刘丽, 刘震, 王连元. 多孔纳米棒氧化锌的制备及其气敏特性[J]. 材料工程, 2014, 0(8): 86-89.
[4] 李东海, 胡明, 孙凤云, 陈鹏, 孙鹏. 多孔硅气体传感器的制备及其气敏性能的研究[J]. 材料工程, 2009, 0(4): 71-74.
[5] 姜涛, 吴一平, 陈建国, 胡一帆, 孙培祯. TiO2薄膜型气体传感器研究进展[J]. 材料工程, 1996, 0(5): 24-26,34.
[6] 姜涛, 吴一平, 陈建国, 胡一帆, 孙培祯. TiO2薄膜型气体传感器研究进展[J]. 材料工程, 1996, 0(5): 24-26,34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn