Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (8): 106-112    DOI: 10.11868/j.issn.1001-4381.2017.000141
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
微电子封装中全Cu3Sn焊点形成过程中的组织演变及生长形貌
梁晓波, 李晓延(), 姚鹏, 李扬, 金凤阳
北京工业大学 材料科学与工程学院 新型功能材料教育部重点实验室, 北京 100124
Microstructural Evolution and Growth Morphology During Formation Process of Full Cu3Sn Solder Joint in Microelectronic Packaging
Xiao-bo LIANG, Xiao-yan LI(), Peng YAO, Yang LI, Feng-yang JIN
Key Laboratory of Advanced Functional Materials of Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(2723 KB)   HTML ( 23 )  
输出: BibTeX | EndNote (RIS)      
摘要 

在3D封装中,全Cu3Sn焊点逐渐得到广泛应用。选择270℃,1N分别作为钎焊温度和钎焊压力,在不同钎焊时间下制备焊点,分析其组织演变过程,分别观察不同钎焊温度和钎焊时间下Cu6Sn5立体形貌,以研究Cu6Sn5生长规律及温度对其生长形貌的影响。结果表明:钎焊30min后Cu基板与液态Sn之间形成扇贝状Cu6Sn5,Cu6Sn5与Cu基板之间出现一层较薄的Cu3Sn。当钎焊时间增加到60min后,液态Sn全部被消耗,上下两层Cu6Sn5形成一个整体。继续增加钎焊时间,Cu3Sn以Cu6Sn5的消耗为代价不断长大,直到480min时Cu6Sn5全部转化成Cu3Sn。Cu6Sn5长大增厚过程为表面形核、长大、小晶粒融合、包裹初始大晶粒。随着钎焊温度的增加,Cu6Sn5的形貌逐渐由多面体状变为匍匐状。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁晓波
李晓延
姚鹏
李扬
金凤阳
关键词 Cu3Sn焊点Cu6Sn5组织演变形貌    
Abstract

The full Cu3Sn solder joint has been widely used in 3D packaging gradually. 270℃ and 1N were chosen as soldering temperature and pressure respectively to fabricate solder joints under different soldering time in order to analyze the process of microstructural evolution.Cu6Sn5 morphology with different soldering temperatures and time was also observed respectively to investigate the growth law of Cu6Sn5 and the effect of soldering temperature on the Cu6Sn5 morphology. The results show that scallop-like Cu6Sn5 is formed along the Cu substrate after 30min soldering, and a thin layer of Cu3Sn is generated between Cu6Sn5 and Cu substrate.When the soldering time is increased to 60min, liquid Sn is totally consumed and Cu6Sn5 becomes a cohesive whole. With the increase of soldering time, Cu3Sn grows at the expense of Cu6Sn5. Cu6Sn5 is totally transformed into Cu3Sn up to 480min. The growing process of Cu6Sn5 includes nucleation, growth, fusion and covering up the big grain. With the increase of soldering temperature, the morphology of Cu6Sn5 changes from polyhedron shape to procumbent.

Key wordsCu3Sn solder joint    Cu6Sn5    microstructural evolution    morphology
收稿日期: 2017-02-12      出版日期: 2018-08-17
中图分类号:  TG406  
基金资助:国家自然科学基金项目(51575011);北京市自然科学基金(2162002)
通讯作者: 李晓延     E-mail: xyli@bjut.edu.cn
作者简介: 李晓延(1963-), 男, 博士, 教授, 现主要从事微电子组装材料, 高性能焊接材料等方面的研究, 联系地址:北京市朝阳区平乐园100号北京工业大学材料科学与工程学院(100124), E-mail:xyli@bjut.edu.cn
引用本文:   
梁晓波, 李晓延, 姚鹏, 李扬, 金凤阳. 微电子封装中全Cu3Sn焊点形成过程中的组织演变及生长形貌[J]. 材料工程, 2018, 46(8): 106-112.
Xiao-bo LIANG, Xiao-yan LI, Peng YAO, Yang LI, Feng-yang JIN. Microstructural Evolution and Growth Morphology During Formation Process of Full Cu3Sn Solder Joint in Microelectronic Packaging. Journal of Materials Engineering, 2018, 46(8): 106-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000141      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/106
Fig.1  焊点制备示意图
(a)装卡;(b)等温钎焊;(c)全Cu3Sn焊点
Fig.2  焊点加热剥离示意图
(a)焊点;(b)加热;(c)剥离
Fig.3  不同钎焊时间下焊点横截面组织形貌
(a)30min;(b)60min;(c)90min;(d)120min;(e)150min;(f)180min;(g)210min;(h)300min;(i)480min
Fig.4  钎焊30min后焊点界面SEM及EDAX图
(a)SEM图;(b)A点EDAX图;(c)B点EDAX图;(d)C点EDAX图
Fig.5  不同钎焊时间焊点及IMCs厚度
Fig.6  不同钎焊时间下Cu6Sn5形貌
(a)15min;(b)30min;(c)45min
Fig.7  不同钎焊温度下钎焊30min后焊点中Cu6Sn5形貌
(a)240℃;(b)270℃;(c)300℃
1 薛洁, 叶菊华, 管清宝, 等. 电子封装用氰酸酯复合材料的研究[J]. 材料工程, 2013, (4): 63- 67.
1 XUE J , YE J H , GUAN Q B , et al. Novel cyanate ester resin composites for microelectricalpackaging[J]. Journal of Materials Engineering, 2013, (4): 63- 67.
2 CARSON F P , KIM Y C , YOON I S . 3-D stacked package technology and trends[J]. Proceedings of the IEEE, 2009, 97 (1): 31- 42.
doi: 10.1109/JPROC.2008.2007460
3 夏艳. 3D集成的发展现状与趋势[J]. 中国集成电路, 2011, 7 (146): 23- 27.
3 XIA Y . Present situation and development of 3D integration[J]. China Integrated Circuit, 2011, 7 (146): 23- 27.
4 HOIVIK N, K WANG, K AASMUNDTVEI, et al. Fluxless wafer-level Cu-Sn bonding for micro-and nanosystems packaging[C]//IEEE Electronic System-integration Technology Conference. Berlin: IEEE, 2010: 1-5.
5 LEE B , J PARK , J SONG , et al. Effects of bonding temperature and pressure on the electrical resistance of Cu/Sn/Cu joints for 3D integration applications[J]. J Electron Mater, 2011, 40 (3): 324- 329.
doi: 10.1007/s11664-010-1460-5
6 WELCH W, CHAE J, LEE S H. Transient liquid phase (TLP) bonding for microsystem packaging applications[C]//The 13th International Conference on Solid-state Sensors, Actuators and Microsystems. Seoul: IEEE, 2005: 1350-1353.
7 LABIE R, LIMAYE P, LEE K W, et al. Reliability testing of Cu-Sn intermetallic micro-bump interconnections for 3D-device stacking[C]//Electronic System-integration Technology Conference. Berlin: IEEE, 2010: 1-5.
8 杨东升. 三维封装芯片固液互扩散低温键合机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
8 YANG D S. 3D packaging solid-liquid interdiffusion chip bonding mechanism under low temperature[D]. Harbin: Harbin Institute of Technology, 2011.
9 CAO Y H , NING W G , LUO L . Wafer-level package with simultaneous TSV connection and cavity hermetic sealing by solder bonding for MEMS device[J]. IEEE Transactions, 2009, 32 (3): 125- 132.
10 CHIU W L , LIU C M , HAUNG Y S , et al. Formation of plate-like channels in Cu6Sn5and Cu3Sn intermetallic compounds during transient liquid reaction of Cu/Sn/Cu structures[J]. Materials Letters, 2016, 164, 5- 8.
doi: 10.1016/j.matlet.2015.10.056
11 ZOU H F , YANG H J , ZHANG Z F . Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals[J]. Acta Materialia, 2008, 56 (11): 2649- 2662.
doi: 10.1016/j.actamat.2008.01.055
12 YAO P , LI X , LIANG X B , et al. Investigation of soldering process and interfacial microstructure evolution for the formation of full Cu3Sn joints in electronic packaging[J]. Materials Science in Semiconductor Processing, 2017, 58, 39- 50.
doi: 10.1016/j.mssp.2016.11.019
13 ZHAO N , ZHONG Y , HUANG M L , et al. Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient[J]. Scientific Reports, 2015, 5 (4): 13491- 13498.
14 LIU H , SALOMONSEN G , WANG K , et al. Wafer-level Cu/Sn to Cu/Sn SLID-bonded interconnects with increased strength[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011, 1 (9): 1350- 1358.
doi: 10.1109/TCPMT.2011.2156793
15 杜茂华, 蒋玉齐, 罗乐. Cu/Sn等温凝固芯片键合工艺研究[J]. 功能材料与器件学报, 2004, 10 (4): 467- 470.
15 DU M H , JIANG Y Q , LUO L . Study of die bonding technology for Cu/Sn isothermal solidification[J]. Journal of Functional Materials and Devices, 2004, 10 (4): 467- 470.
16 肖慧, 李晓延, 李凤辉. 热循环条件下SnAgCu/Cu焊点金属间化合物生长及焊点失效行为[J]. 材料工程, 2010, (10): 38- 42.
doi: 10.3969/j.issn.1001-4381.2010.10.009
16 XIAO H , LI X Y , LI F H . Growth kinetic of intermetallic compounds and failure behavior for SnAgCu/Cu solder joints subjected to thermal cycling[J]. Journal of Materials Engineering, 2010, (10): 38- 42.
doi: 10.3969/j.issn.1001-4381.2010.10.009
17 高瑞婷, 李晓延. 加载速率和钎料厚度对SnAgCu/Cu焊点剪切行为的影响[J]. 焊接学报, 2016, 37 (2): 94- 98.
17 GAO R T , LI X Y . Effect of loading rates and solder thickness on shear behavior of SnAgCu/Cu lead-free solder joint[J]. Transactions of the China Welding Institution, 2016, 37 (2): 94- 98.
18 TU K N , ZENG K . Tinlead (SnPb) solder reaction in flip chip technology[J]. Materials Science and Engineering:R:Reports, 2001, 34 (1): 1- 58.
doi: 10.1016/S0927-796X(01)00029-8
19 TU K N , LEE T Y , JANG J W , et al. Wetting reaction versus solid state aging of eutectic SnPb on Cu[J]. Journal of Applied Physics, 2001, 89 (9): 4843- 4849.
doi: 10.1063/1.1357469
20 MA C H , SWALIN R A . A study of solute diffusion in liquid tin[J]. Acta Metall, 1960, 8 (6): 388- 395.
doi: 10.1016/0001-6160(60)90008-0
21 SUH J O , TU K N , LUTSENKO G V , et al. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper[J]. Acta Materialia, 2008, 56 (5): 1075- 1083.
doi: 10.1016/j.actamat.2007.11.009
[1] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[2] 徐思瑜, 李德, 李佳璐, 申锋, 郑鹏. 锰氧化物的结构分析及其在能源与环境中的典型应用[J]. 材料工程, 2022, 50(8): 82-98.
[3] 程慧聪, 王雅雷, 李阿欣, 刘怀菲, 武囡囡, 刘蓉. 并流共沉淀法合成Dy2O3-ZrO2纳米粉体[J]. 材料工程, 2022, 50(6): 97-106.
[4] 邓奇林, 杨敏, 姚彧敏, 李红, 任慕苏, 孙晋良. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5): 139-146.
[5] 刘石双, 周毅, 李娟, 曹京霞, 蔡建明, 黄旭, 戴圣龙. Ti-22Al-23Nb-1Mo-1Zr合金环锻件组织演变及力学行为[J]. 材料工程, 2022, 50(4): 147-155.
[6] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[7] 孙琦迪, 杨蔚涛, 郝庆国, 关肖虎, 章斌, 杨旗. 低周疲劳变形过程中Fe-33Mn-4Si合金钢的微观组织演变[J]. 材料工程, 2022, 50(4): 162-171.
[8] 汤中英, 邢清源, 杨守杰, 丁宁. 新型Al-Zn-Mg-Sc-Er-Zr合金的热变形行为[J]. 材料工程, 2022, 50(3): 131-137.
[9] 赖佳明, 李京懋, 朱德智, 梁良, 屈盛官, 李小强. 1400℃放电等离子烧结制备MgO-B2O3增韧无金属黏结相WC硬质合金[J]. 材料工程, 2022, 50(11): 73-80.
[10] 阮家苗, 李红, 姚彧敏, 杨敏, 任慕苏, 孙晋良. 热处理温度对高导热3D C/C复合材料性能的影响[J]. 材料工程, 2021, 49(9): 128-134.
[11] 高朝卿, 王晨, 陈胤伯, 尚胜艳, 陈菲, 马海涛, 王云鹏. 自组装Cu6Sn5超疏水冶金结合界面的构筑及其在铜缓蚀中的应用[J]. 材料工程, 2021, 49(8): 120-126.
[12] 施琦, 丁龙, 龙红明, 王毅璠, 春铁军. 纳米形貌对Ce-V催化剂降解氯苯活性影响[J]. 材料工程, 2021, 49(8): 162-168.
[13] 杨洋, 陈新文, 孙炜, 马丽婷, 王翔, 郭广平. 基于数字图像相关方法的CFRP层合板高温压缩性能实验研究[J]. 材料工程, 2021, 49(11): 62-72.
[14] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[15] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn