Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 27-35    DOI: 10.11868/j.issn.1001-4381.2017.000173
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征
朱诗尧1, 李平1, 叶黎城1, 郑俊生2,3, 高源2,3
1. 华东理工大学 化学工程联合国家重点实验室, 上海 200237;
2. 同济大学 新能源汽车工程中心, 上海 201804;
3. 同济大学 汽车学院, 上海 201804
Preparation and Characterization of Pt/buckypaper Catalytic Layer Based on Pt/CNTs Catalyst for Fuel Cells
ZHU Shi-yao1, LI Ping1, YE Li-cheng1, ZHENG Jun-sheng2,3, GAO Yuan2,3
1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China;
2. Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China;
3. College of Automotive Studies, Tongji University, Shanghai 201804, China
全文: PDF(4104 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了提高质子交换膜燃料电池催化剂中贵金属的利用率,以碳纳米管(CNTs)负载Pt为催化剂,设计制备了具有催化剂梯度分布结构的Pt/buckypaper催化层。利用扫描电子显微镜等多种表征手段,观察与分析了催化剂和催化层的结构及Pt含量分布,并考察了它们的电化学性能。结果表明,Pt/CNTs催化剂中Pt颗粒在超声混酸氧化处理过的CNTs表面上分布均匀,平均直径为2.4nm。其电化学活性表面积(ECSA)接近于商用Pt/C催化剂的值,比质量活性(MA)则远高于商用催化剂,且具备更为优异的电化学循环稳定性。利用这种催化剂制备的Pt/buckypaper催化层保持着较大的ECSA,表明其中的Pt颗粒具有较高的利用率,体现了这种新颖结构的独特优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱诗尧
李平
叶黎城
郑俊生
高源
关键词 质子交换膜燃料电池铂催化剂碳纳米管巴基纸梯度结构制备    
Abstract:In order to increase the utilization of the precious metal catalysts in proton exchange membrane fuel cells, a new type of Pt/buckypaper catalytic layer with gradient structure was designed and prepared. Carbon nanotubes (CNTs) pretreated using ultrasonic method in mixed acid were used as the support of Pt catalyst. The Pt/buckypaper catalytic layer with Pt/CNTs gradient distribution was fabricated by simple filtration method. Several techniques such as scanning electron microscope, energy-dispersive X-ray spectroscope were utilized to characterize the microstructure and morphology of the catalyst and catalytic layer as well as the Pt distribution. The electrocatalytic performance of the catalyst and catalytic layer were measured by cyclic voltammetry and linear sweep voltammetry methods. The results show that the Pt particles were well dispersed on the CNTs support and the Pt particle size of Pt/CNTs was about 2.4nm. The electrochemical specific area (ECSA) of Pt/CNTs is similar to that of commercial Pt/C catalyst, while its specific mass activity and electrochemical stability were much higher than those of Pt/C. The ECSA of Pt/buckypaper catalytic layer can basically maintain the value of Pt/CNTs, indicating a high utilization of Pt. The novel gradient structure of catalytic layer manifests its promising applications in fuel cells.
Key wordsproton exchange membrane fuel cell    Pt catalyst    carbon nanotube    buckypaper    gradient structure    preparation
收稿日期: 2017-02-17      出版日期: 2018-06-14
中图分类号:  TM911.42  
通讯作者: 李平(1966-),女,博士,教授,博士生导师,研究方向:新能源与催化材料,E-mail:lipingunilab@ecust.edu.cn;郑俊生(1979-),男,博士,博士生导师,研究方向:车用新能源技术,E-mail:jszheng@tongji.edu.cn     E-mail: lipingunilab@ecust.edu.cn;jszheng@tongji.edu.cn
引用本文:   
朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
ZHU Shi-yao, LI Ping, YE Li-cheng, ZHENG Jun-sheng, GAO Yuan. Preparation and Characterization of Pt/buckypaper Catalytic Layer Based on Pt/CNTs Catalyst for Fuel Cells. Journal of Materials Engineering, 2018, 46(6): 27-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000173      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/27
[1] BALL M,WIETSCHEL M.The future of hydrogen-opportunities and challenges[J].International Journal of Hydrogen Energy,2009,34(2):615-627.
[2] AMBROSIO E P,FRANCIA C,MANZOLI M,et al.Platinum catalyst supported on mesoporous carbon for PEMFC[J].International Journal of Hydrogen Energy,2008,33(12):3142-3145.
[3] HAILE S M.Fuel cell materials and components[J].Acta Materialia,2003,51(19):5981-6000.
[4] STEVENS D A,HICKS M T,HAUGEN G M,et al.Ex situ and in situ stability studies of PEMFC catalysts effect of carbon type and humidification on degradation of the carbon[J].Journal of the Electrochemical Society,2005,152(12):A2309-A2315.
[5] WU G,MORE K L,JOHNSTON C M,et al.High-performance electrocatalysts for oxygen reduction derived from polyaniline,iron,and cobalt[J].Science,2011,332(6028):443-447.
[6] ZHENG J S,TIAN T,GAO Y,et al.Ultra-low Pt loading catalytic layer based on buckypaper for oxygen reduction reaction[J].International Journal of Hydrogen Energy,2014,39(25):13816-13823.
[7] YE L C,GAO Y,ZHENG J S,et al.Preparation of Pt/buckypaper by surface modified multi-walled carbon nanotubes for oxygen reduction reaction in PEMFCs[J].Ecs Transactions,2015,66(13):1-9.
[8] ZHU W,ZHENG J P,LIANG R,et al.Ultra-low platinum loading high-performance PEMFCs using buckypaper-supported electrodes[J].Electrochemistry Communications,2010,12(11):1654-1657.
[9] ZHU W,KU D,ZHENG J P,et al.Buckypaper-based catalytic electrodes for improving platinum utilization and PEMFC's performance[J].Electrochimica Acta,2010,55(7):2555-2560.
[10] CHEN S,YE F,LIN W.Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media[J].Journal of Natural Gas Chemistry,2009,18(2):199-204.
[11] LIMA F H B,ZHANG J,SHAO M H,et al.Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions[J].Journal of Physical Chemistry C,2006,111(1):404-410.
[12] WANG S,JIANG S P,WHITE T J,et al.Electrocatalytic activity and interconnectivity of Pt nanoparticles on multi-walled carbon nanotubes for fuel cells[J].Journal of Physical Chemistry C,2009,113(43):18935-18945.
[13] 陈煜,唐亚文,周益民,等.碳纳米管作燃料电池催化剂载体的研究进展[J].电池,2006,36(1):71-73. CHEN Y,TANG Y W,ZHOU Y M,et al.Research progress in carbon nanotubes as supporter of catalysts in fuel cell[J].Battery Bimonthly,2006,36(1):71-73.
[14] 邓凌峰,彭辉艳,覃昱焜,等.碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J].材料工程,2017,45(4):121-127. DENG L F,PENG H Y,QIN Y K,et al.Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J].Journal of Materials and Engineering,2017,45(4):121-127.
[15] KHARISOV B I,KHARISSOVA O V,GUTIERREZ H L,et al.Recent advances on the soluble carbon nanotubes[J].Industrial & Engineering Chemistry Research,2008,48(2):572-590.
[16] TASIS D,TAGMATARCHIS N,GEORGAKILAS V,et al.Soluble carbon nanotubes[J].Chemistry,2003,9(43):4000-4008.
[17] RODRÍGUEZ-REINOSO F.The role of carbon materials in heterogeneous catalysis[J].Carbon,1998,36(3):159-175.
[18] 宋磊,陈纪强,范汶鑫,等.电化学处理对碳纤维表面加载碳纳米管的影响机理[J].材料工程,2017,45(11):15-22. SONG L,CHEN J Q,FAN W X,et al.Influencing mechanism of electrochemical treatment on preparation of CNTs-grafted on carbon fibers[J].Journal of Materials and Engineering,2017,45(11):15-22.
[19] LIANG S,LI G,TIAN R.Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation[J].Journal of Materials Science,2016,51(7):3513-3524.
[20] GUITTONNEAU F,ABDELOUAS A,GRAMBOW B,et al.The effect of high power ultrasound on an aqueous suspension of graphite[J].Ultrasonics Sonochemistry,2010,17(2):391-8.
[21] XING Y.Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes[J].Journal of Physical Chemistry B,2004,108(50):19255-19259.
[22] 杨春巍,胡信国,张亮,等.多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J].材料工程,2008(7):79-82. YANG C W,HU X G,ZHANG L,et al.Study of functionalization on multi-wall carbon nanotubes by ultrasound[J].Journal of Materials and Engineering,2008(7):79-82.
[23] CHEN Y,WANG J,LIU H,et al.Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electro-catalytic activity of supported Pt for proton-exchange membrane fuel cells[J].Journal of Physical Chemistry C,2011,115(9):3769-3776.
[24] LU C Y,WEI M C,CHANG S H,et al.Study of the activity and backscattered electron image of Pt/CNTs prepared by the polyol process for flue gas purification[J].Applied Catalysis A General,2009,354(1):57-62.
[25] CHEN Y,WANG J,LIU H,et al.Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells[J].Electrochemistry Communications,2009,11(10):2071-2076.
[26] LEE K,ZHANG J,WANG H,et al.Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis[J].Journal of Applied Electrochemistry,2006,36(5):507-522.
[27] SUÁREZ-ALCÁNTARA K,SOLORZA-FERIA O.Kinetics and PEMFC performance of RuxMoySez nanoparticles as a cathode catalyst[J].Electrochimica Acta,2008,53(15):4981-4989.
[28] GASTEIGER H A,KOCHA S S,SOMPALLI B,et al.Activity benchmarks for Pt,Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs[J].Applied Catalysis B:Environmental,2005,56(1):9-35.
[29] 王毅,曾湘安,刘鸿.催化剂浆液制备条件对Pt/C催化剂电化学性能的影响[J].催化学报,2011,32(1):184-188. WANG Y,ZENG X A,LIU H, et al.Effect of preparation conditions of catalyst ink on the electrochemical properties of Pt/C catalyst[J].Chinese Journal of Catalysis,2011,32(1):184-188.
[30] WANG L,YANG C,DOU S,et al.Nitrogen-doped hierarchically porous carbon networks:synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery[J].Electrochimica Acta,2016,219:592-603.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[3] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[4] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[5] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[6] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[7] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
[8] 毕明刚, 张纪梅, 郝帅帅, 谢博尧. 硫醇保护的银簇制备及其荧光检测应用的进展[J]. 材料工程, 2020, 48(2): 11-21.
[9] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[10] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[11] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[12] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[13] 王晓辉, 罗海文. 飞机起落架用超高强度不锈钢的研究及应用进展[J]. 材料工程, 2019, 47(9): 1-12.
[14] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[15] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn