Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (6): 27-35    DOI: 10.11868/j.issn.1001-4381.2017.000173
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征
朱诗尧1, 李平1,*(), 叶黎城1, 郑俊生2,3,*(), 高源2,3
1 华东理工大学 化学工程联合国家重点实验室, 上海 200237
2 同济大学 新能源汽车工程中心, 上海 201804
3 同济大学 汽车学院, 上海 201804
Preparation and Characterization of Pt/buckypaper Catalytic Layer Based on Pt/CNTs Catalyst for Fuel Cells
Shi-yao ZHU1, Ping LI1,*(), Li-cheng YE1, Jun-sheng ZHENG2,3,*(), Yuan GAO2,3
1 State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
2 Clean Energy Automotive Engineering Center, Tongji University, Shanghai 201804, China
3 College of Automotive Studies, Tongji University, Shanghai 201804, China
全文: PDF(4104 KB)   HTML ( 5 )  
输出: BibTeX | EndNote (RIS)      
摘要 

为了提高质子交换膜燃料电池催化剂中贵金属的利用率,以碳纳米管(CNTs)负载Pt为催化剂,设计制备了具有催化剂梯度分布结构的Pt/buckypaper催化层。利用扫描电子显微镜等多种表征手段,观察与分析了催化剂和催化层的结构及Pt含量分布,并考察了它们的电化学性能。结果表明,Pt/CNTs催化剂中Pt颗粒在超声混酸氧化处理过的CNTs表面上分布均匀,平均直径为2.4nm。其电化学活性表面积(ECSA)接近于商用Pt/C催化剂的值,比质量活性(MA)则远高于商用催化剂,且具备更为优异的电化学循环稳定性。利用这种催化剂制备的Pt/buckypaper催化层保持着较大的ECSA,表明其中的Pt颗粒具有较高的利用率,体现了这种新颖结构的独特优势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱诗尧
李平
叶黎城
郑俊生
高源
关键词 质子交换膜燃料电池铂催化剂碳纳米管巴基纸梯度结构制备    
Abstract

In order to increase the utilization of the precious metal catalysts in proton exchange membrane fuel cells, a new type of Pt/buckypaper catalytic layer with gradient structure was designed and prepared. Carbon nanotubes (CNTs) pretreated using ultrasonic method in mixed acid were used as the support of Pt catalyst. The Pt/buckypaper catalytic layer with Pt/CNTs gradient distribution was fabricated by simple filtration method. Several techniques such as scanning electron microscope, energy-dispersive X-ray spectroscope were utilized to characterize the microstructure and morphology of the catalyst and catalytic layer as well as the Pt distribution. The electrocatalytic performance of the catalyst and catalytic layer were measured by cyclic voltammetry and linear sweep voltammetry methods. The results show that the Pt particles were well dispersed on the CNTs support and the Pt particle size of Pt/CNTs was about 2.4nm. The electrochemical specific area (ECSA) of Pt/CNTs is similar to that of commercial Pt/C catalyst, while its specific mass activity and electrochemical stability were much higher than those of Pt/C. The ECSA of Pt/buckypaper catalytic layer can basically maintain the value of Pt/CNTs, indicating a high utilization of Pt. The novel gradient structure of catalytic layer manifests its promising applications in fuel cells.

Key wordsproton exchange membrane fuel cell    Pt catalyst    carbon nanotube    buckypaper    gradient structure    preparation
收稿日期: 2017-02-17      出版日期: 2018-06-14
中图分类号:  TM911.42  
基金资助:国家自然科学基金项目(21276077);中央高校基本科研业务费专项资金项目(WG1213011);中国石油科技创新基金项目(2016D-5007-0501);科技部科技支撑项目(2015BAG06B00)
通讯作者: 李平,郑俊生     E-mail: lipingunilab@ecust.edu.cn;jszheng@tongji.edu.cn
作者简介: 郑俊生(1979-), 男, 博士, 博士生导师, 研究方向:车用新能源技术, 联系地址:上海市曹安公路4800号同济大学新能源汽车工程中心(201804), E-mail:jszheng@tongji.edu.cn
李平(1966-), 女, 博士, 教授, 博士生导师, 研究方向:新能源与催化材料, 联系地址:上海市徐汇区梅陇路130号华东理工大学化工学院(200237), E-mail:lipingunilab@ecust.edu.cn
引用本文:   
朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
Shi-yao ZHU, Ping LI, Li-cheng YE, Jun-sheng ZHENG, Yuan GAO. Preparation and Characterization of Pt/buckypaper Catalytic Layer Based on Pt/CNTs Catalyst for Fuel Cells. Journal of Materials Engineering, 2018, 46(6): 27-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000173      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/27
Fig.1  未经预处理的Pt/CNTs催化剂的HR-TEM(a)和粒径分布图(b)
Fig.2  超声混酸预处理的Pt/CNTs催化剂的HR-TEM(a)和粒径分布图(b)
Fig.3  未经预处理与预处理过的Pt/CNTs催化剂的XRD图谱
Fig.4  3种催化剂的CV曲线图(未预处理Pt/CNTs、超声混酸处理Pt/CNTs和商用Pt/C催化剂)
Fig.5  Pt/C与两种Pt/CNTs催化剂的LSV曲线图
Fig.6  Pt/CNTs(a)和商用Pt/C催化剂(b)耐久性测试图
Fig.7  Buckypaper催化层实物图
(a)催化层附于尼龙膜上;(b)从尼龙滤膜上剥下
Fig.8  基于Pt/CNTs的buckypaper催化层的SEM图
(a)上层表面;(b)下层表面
Fig.9  Buckypaper催化层截面铂的能谱图和铂的分布统计图
(a)SEM图;(b)铂元素EDAX能谱图;(c)铂元素分布统计图
Material BET surface area/(m2·g-1)
CNFs 28.9
Pt/CNTs 224.1
Pt/C 250.0
Top catalytic layer 141.7
Bottom catalytic layer 132.5
Table 1  催化层各材料比表面积
Fig.10  催化层与Pt/CNTs催化剂的CV对比图(a)校准之前;(b)校准之后
1 BALL M , WIETSCHEL M . The future of hydrogen-opportunities and challenges[J]. International Journal of Hydrogen Energy, 2009, 34 (2): 615- 627.
doi: 10.1016/j.ijhydene.2008.11.014
2 AMBROSIO E P , FRANCIA C , MANZOLI M , et al. Platinum catalyst supported on mesoporous carbon for PEMFC[J]. International Journal of Hydrogen Energy, 2008, 33 (12): 3142- 3145.
doi: 10.1016/j.ijhydene.2008.03.045
3 HAILE S M . Fuel cell materials and components[J]. Acta Materialia, 2003, 51 (19): 5981- 6000.
doi: 10.1016/j.actamat.2003.08.004
4 STEVENS D A , HICKS M T , HAUGEN G M , et al. Ex situ and in situ stability studies of PEMFC catalysts effect of carbon type and humidification on degradation of the carbon[J]. Journal of the Electrochemical Society, 2005, 152 (12): A2309- A2315.
doi: 10.1149/1.2097361
5 WU G , MORE K L , JOHNSTON C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332 (6028): 443- 447.
doi: 10.1126/science.1200832
6 ZHENG J S , TIAN T , GAO Y , et al. Ultra-low Pt loading catalytic layer based on buckypaper for oxygen reduction reaction[J]. International Journal of Hydrogen Energy, 2014, 39 (25): 13816- 13823.
doi: 10.1016/j.ijhydene.2014.03.054
7 YE L C , GAO Y , ZHENG J S , et al. Preparation of Pt/buckypaper by surface modified multi-walled carbon nanotubes for oxygen reduction reaction in PEMFCs[J]. Ecs Transactions, 2015, 66 (13): 1- 9.
doi: 10.1149/06613.0001ecst
8 ZHU W , ZHENG J P , LIANG R , et al. Ultra-low platinum loading high-performance PEMFCs using buckypaper-supported electrodes[J]. Electrochemistry Communications, 2010, 12 (11): 1654- 1657.
doi: 10.1016/j.elecom.2010.09.019
9 ZHU W , KU D , ZHENG J P , et al. Buckypaper-based catalytic electrodes for improving platinum utilization and PEMFC's performance[J]. Electrochimica Acta, 2010, 55 (7): 2555- 2560.
doi: 10.1016/j.electacta.2009.12.026
10 CHEN S , YE F , LIN W . Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media[J]. Journal of Natural Gas Chemistry, 2009, 18 (2): 199- 204.
doi: 10.1016/S1003-9953(08)60108-5
11 LIMA F H B , ZHANG J , SHAO M H , et al. Catalytic activity-d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions[J]. Journal of Physical Chemistry C, 2006, 111 (1): 404- 410.
12 WANG S , JIANG S P , WHITE T J , et al. Electrocatalytic activity and interconnectivity of Pt nanoparticles on multi-walled carbon nanotubes for fuel cells[J]. Journal of Physical Chemistry C, 2009, 113 (43): 18935- 18945.
doi: 10.1021/jp906923z
13 陈煜, 唐亚文, 周益民, 等. 碳纳米管作燃料电池催化剂载体的研究进展[J]. 电池, 2006, 36 (1): 71- 73.
13 CHEN Y , TANG Y W , ZHOU Y M , et al. Research progress in carbon nanotubes as supporter of catalysts in fuel cell[J]. Battery Bimonthly, 2006, 36 (1): 71- 73.
14 邓凌峰, 彭辉艳, 覃昱焜, 等. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45 (4): 121- 127.
doi: 10.11868/j.issn.1001-4381.2016.001044
14 DENG L F , PENG H Y , QIN Y K , et al. Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J]. Journal of Materials and Engineering, 2017, 45 (4): 121- 127.
doi: 10.11868/j.issn.1001-4381.2016.001044
15 KHARISOV B I , KHARISSOVA O V , GUTIERREZ H L , et al. Recent advances on the soluble carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2008, 48 (2): 572- 590.
16 TASIS D , TAGMATARCHIS N , GEORGAKILAS V , et al. Soluble carbon nanotubes[J]. Chemistry, 2003, 9 (43): 4000- 4008.
17 RODRÍGUEZ-REINOSO F . The role of carbon materials in heterogeneous catalysis[J]. Carbon, 1998, 36 (3): 159- 175.
doi: 10.1016/S0008-6223(97)00173-5
18 宋磊, 陈纪强, 范汶鑫, 等. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45 (11): 15- 22.
doi: 10.11868/j.issn.1001-4381.2016.001038
18 SONG L , CHEN J Q , FAN W X , et al. Influencing mechanism of electrochemical treatment on preparation of CNTs-grafted on carbon fibers[J]. Journal of Materials and Engineering, 2017, 45 (11): 15- 22.
doi: 10.11868/j.issn.1001-4381.2016.001038
19 LIANG S , LI G , TIAN R . Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation[J]. Journal of Materials Science, 2016, 51 (7): 3513- 3524.
doi: 10.1007/s10853-015-9671-z
20 GUITTONNEAU F , ABDELOUAS A , GRAMBOW B , et al. The effect of high power ultrasound on an aqueous suspension of graphite[J]. Ultrasonics Sonochemistry, 2010, 17 (2): 391- 8.
doi: 10.1016/j.ultsonch.2009.08.011
21 XING Y . Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes[J]. Journal of Physical Chemistry B, 2004, 108 (50): 19255- 19259.
doi: 10.1021/jp046697i
22 杨春巍, 胡信国, 张亮, 等. 多壁碳纳米管的超声处理对PtRu/MWCNTs电催化性能的影响[J]. 材料工程, 2008, (7): 79- 82.
22 YANG C W , HU X G , ZHANG L , et al. Study of functionalization on multi-wall carbon nanotubes by ultrasound[J]. Journal of Materials and Engineering, 2008, (7): 79- 82.
23 CHEN Y , WANG J , LIU H , et al. Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electro-catalytic activity of supported Pt for proton-exchange membrane fuel cells[J]. Journal of Physical Chemistry C, 2011, 115 (9): 3769- 3776.
doi: 10.1021/jp108864y
24 LU C Y , WEI M C , CHANG S H , et al. Study of the activity and backscattered electron image of Pt/CNTs prepared by the polyol process for flue gas purification[J]. Applied Catalysis A General, 2009, 354 (1): 57- 62.
25 CHEN Y , WANG J , LIU H , et al. Enhanced stability of Pt electrocatalysts by nitrogen doping in CNTs for PEM fuel cells[J]. Electrochemistry Communications, 2009, 11 (10): 2071- 2076.
doi: 10.1016/j.elecom.2009.09.008
26 LEE K , ZHANG J , WANG H , et al. Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis[J]. Journal of Applied Electrochemistry, 2006, 36 (5): 507- 522.
doi: 10.1007/s10800-006-9120-4
27 SUÁREZ-ALCÁNTARA K , SOLORZA-FERIA O . Kinetics and PEMFC performance of RuxMoySez nanoparticles as a cathode catalyst[J]. Electrochimica Acta, 2008, 53 (15): 4981- 4989.
doi: 10.1016/j.electacta.2008.02.025
28 GASTEIGER H A , KOCHA S S , SOMPALLI B , et al. Activity benchmarks for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs[J]. Applied Catalysis B:Environmental, 2005, 56 (1): 9- 35.
29 王毅, 曾湘安, 刘鸿. 催化剂浆液制备条件对Pt/C催化剂电化学性能的影响[J]. 催化学报, 2011, 32 (1): 184- 188.
29 WANG Y , ZENG X A , LIU H , et al. Effect of preparation conditions of catalyst ink on the electrochemical properties of Pt/C catalyst[J]. Chinese Journal of Catalysis, 2011, 32 (1): 184- 188.
30 WANG L , YANG C , DOU S , et al. Nitrogen-doped hierarchically porous carbon networks:synthesis and applications in lithium-ion battery, sodium-ion battery and zinc-air battery[J]. Electrochimica Acta, 2016, 219, 592- 603.
doi: 10.1016/j.electacta.2016.10.050
[1] 孙小卉, 刘淑红, 卢璐, 史继诚, 徐洪峰. 碳载体预处理对燃料电池Co-N/C非铂催化剂氧还原性能的影响[J]. 材料工程, 2022, 50(9): 52-58.
[2] 刘庆帅, 刘秀波, 刘一帆, 张林, 孟元, 刘怀菲. 陶瓷基高温自润滑复合涂层的制备及摩擦学性能研究进展[J]. 材料工程, 2022, 50(6): 61-74.
[3] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[4] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[5] 黄英, 陈晨, 李超, 王佳明, 张帅, 张政, 贾全兴, 路梦伟, 韩小鹏, 高小刚. 柔性储能电池电极的设计、制备与应用[J]. 材料工程, 2022, 50(4): 1-14.
[6] 张婷, 李生娟, 吉莹, 于沺沺, 李田成, 薛裕华. 氮掺杂石墨烯原位生长碳纳米管复合过渡金属催化剂的制备及电催化性能[J]. 材料工程, 2022, 50(4): 123-131.
[7] 姜明明, 孙树峰, 王津, 王萍萍, 孙晓雨, 邵晶, 刘纪新, 曹爱霞, 孙维丽, 陈希章. 激光熔覆制备高熵合金涂层耐磨性研究进展[J]. 材料工程, 2022, 50(3): 18-32.
[8] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[9] 刘旺冠, 蒋兴华, 郭建华. 氮化铝/氮化硼/碳纳米管/硅橡胶复合材料的力致填料取向对导热性能的影响[J]. 材料工程, 2022, 50(2): 127-134.
[10] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[11] 乔俊宇, 李秀涛. 基于MOFs的碳纳米管复合材料的制备和应用进展[J]. 材料工程, 2021, 49(9): 27-40.
[12] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[13] 方滔, 陈力, 廉博博, 胡健, 李海龙. 炭化过程施压对气体扩散层用碳纸结构与性能的影响[J]. 材料工程, 2021, 49(5): 98-105.
[14] 王海博, 李春燕, 李金玲, 王顺平, 寇生中. Fe基非晶合金粉末的研究进展[J]. 材料工程, 2021, 49(4): 34-51.
[15] 戴远哲, 唐波, 张振宇, 任首龙. 碳纳米管/石蜡相变复合材料研究进展[J]. 材料工程, 2021, 49(12): 91-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn