Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 131-138    DOI: 10.11868/j.issn.1001-4381.2017.000231
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为
周航, 张峥
北京航空航天大学 材料科学与工程学院, 北京 100191
Crack initiation and early propagation behavior of AlSi10Mg(Cu) cast alloy under thermal fatigue
ZHOU Hang, ZHANG Zheng
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
全文: PDF(14868 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 微观观察AlSi10Mg(Cu)铸铝合金在热疲劳裂纹的萌生和早期扩展过程,重点研究共晶硅粒子对热疲劳裂纹行为的影响。结果表明:热疲劳裂纹萌生于脱粘共晶硅粒子与铝基体间的开裂界面,原因是共晶硅粒子与铝基体的热膨胀系数不同,引起热循环过程中两相热应变不协调,从而在两相界面处产生循环应力而引起疲劳破坏。热疲劳裂纹的扩展在长度和宽度上同时进行,具有良好塑性的铝枝晶对疲劳裂纹的扩展起阻碍作用。对热疲劳过程中共晶硅粒子周围应力场的模拟分析进一步解释了实验现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周航
张峥
关键词 AlSi10Mg(Cu)铸铝合金热疲劳裂纹萌生共晶硅粒子    
Abstract:The damage evolution under thermal fatigue loading for AlSi10Mg(Cu) cast alloy on the crack initiation and early propagation stage, mainly focusing on the influence of silicon particles on the thermal fatigue crack behaviour. The results show that, thermal fatigue crack origins from the failure interfaces between debonded silicon particles and matrix, that is because of the difference in thermal expansion coefficient between silicon particles and aluminum matrix, thus leading to the misfit of thermal strain, finally caused cyclic stress on the interfaces with fatigue failure. The propagation of thermal fatigue crack related to the growth on both length and width direction, ductile dendrite hinders the propagation of fatigue crack. The result of simulation analysis about the stress distribution around silicon particles during thermal fatigue is given to help discuss the experiment results.
Key wordsAlSi10Mg(Cu) cast alloy    thermal fatigue    crack initiation    eutectic silicon particle
收稿日期: 2017-02-27      出版日期: 2019-03-12
中图分类号:  TG113.25  
通讯作者: 张峥(1965-),男,教授,主要从事材料的失效分析预测预防研究工作,联系地址:北京市海淀区学院路37号北京航空航天大学材料学院(100191),E-mail:zhangzh@buaa.edu.cn     E-mail: zhangzh@buaa.edu.cn
引用本文:   
周航, 张峥. AlSi10Mg(Cu)铸铝合金的热疲劳裂纹萌生及早期扩展行为[J]. 材料工程, 2019, 47(3): 131-138.
ZHOU Hang, ZHANG Zheng. Crack initiation and early propagation behavior of AlSi10Mg(Cu) cast alloy under thermal fatigue. Journal of Materials Engineering, 2019, 47(3): 131-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000231      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/131
[1] 吴承建.金属材料学[M].北京:冶金工业出版社,2000:194-195. WU C J.Metallic materials science[M].Beijing:Metallurgical Industry Press,2000:194-195.
[2] 杨明军,李凯,杜勇,等.航空用铝合金超微结构试验表征[J].航空材料学报,2017,37(1):36-51. YANG M J,LI K,DU Y,et al.Experimental characterization of ultrastructure of aviation aluminum alloys[J].Journal of Aeronautical Materials,2017,37(1):36-51.
[3] 夏春晶,刘玉凤,闫明,等.气缸盖蠕变-疲劳寿命预测[J].失效分析与预防,2008(1):59-63. XIA C J,LIU Y F,YAN M,et al.Creep-thermal fatigue life prediction of cylinder head[J].Failure Analysis and Prevention,2008(1):59-63.
[4] ZHANG Z,SI N,LIU G,et al.Thermal fatigue behavior of ZAlSi7Cu4 under different technological conditions[J].Special Casting & Nonferrous Alloys,2012,32(4):381-385.
[5] SPERA D A.What is thermal fatigue[M].Philadelphia,USA:ASTM International,1976:3-9.
[6] ALDRIDGE M,YEOMANS J A.The thermal shock behaviour of ductile particle toughened alumina composites[J].Journal of the European Ceramic Society,1999,19(9):1769-1775.
[7] LI Z,JIANG Y,ZHOU R,et al.Thermal fatigue mechanism of WC particles reinforced steel substrate surface composite at different thermal shock temperatures[J].Journal of Alloys & Compounds,2014,596(8):48-54.
[8] 韩增祥.金属热疲劳试验方法的探索[J].理化检验:物理分册,2008(5):250-254. HAN Z X.Exploration of testing method for thermal fatigue of metal[J].Physical Testing and Chemical Analysis Part A:Physical Testing,2008(5):250-254.
[9] 陈忠伟,张海方,雷毅敏,等.工业铸造A357铝合金SEM原位拉伸实验[J].稀有金属材料与工程,2011(增刊2):132-136. CHEN Z W,ZHANG H F,LEI Y M,et al.In-situ tension investigation of commercial A357 aluminum alloys[J].Rare Metal Materials and Engineering,2011(Suppl 2):132-136.
[10] 尤显卿,郑玉春,程娟文,等.热应力作用下碳化钨基钢结硬质合金梯形裂纹的形成机理[J].中国有色金属学报,2003,13(5):1098-1102. YOU X Q,ZHENG Y C,CHENG J W,et al.Formation mechanism of trapezoid crack in WC steel bonded carbide under action of thermal stress[J].The Chinese Journal of Nonferrous Metals,2003,13(5):1098-1102.
[11] McDOWELL D L,GALL K,HORSTEMEYER M F,et al.Microstructure-based fatigue modeling of cast A356-T6 alloy[J].Engineering Fracture Mechanics,2003,70(1):49-80.
[12] WANG X S,LIANG F,FAN J H,et al.Low-cycle fatigue small crack initiation and propagation behaviour of cast magnesium alloys based on in-situ SEM observations[J].Philosophical Magazine A,2006,86(11):1581-1596.
[13] FISSOLO A,AMIABLE S,ANCELET O,et al.Crack initiation under thermal fatigue:an overview of CEA experience.part I:thermal fatigue appears to be more damaging than uniaxial isothermal fatigue[J].International Journal of Fatigue,2009,31(3):587-600.
[14] FISSOLO A,GOURDIN C,ANCELET O,et al.Crack initiation under thermal fatigue:an overview of CEA experience:part Ⅱ (of Ⅱ):application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage[J].International Journal of Fatigue,2009,31(7):1196-1210.
[15] NEEDLEMAN A.A continuum model for void nucleation by inclusion debonding[J].Journal of Applied Mechanics,1987,54(3):525-531.
[16] GALL K,HORSTEMEYER M,McDOWELL D L,et al.Finite element analysis of the stress distributions near damaged Si particle clusters in cast Al-Si alloys[J].Mechanics of Materials,2000,32(5):277-301.
[17] 杨涤心,李先勇,王汝燿.铝硅合金热疲劳过程的应力应变分析[J].理化检验:物理分册,1994(4):15-17. YANG D X,LI X Y,WANG R Y.Analysis of stress and strain in process of thermal fatigue of aluminum silicon alloy[J].Physical Testing and Chemical Analysis Part A:Physical Testing,1994(4):15-17.
[18] 杨涤心,李先勇,王汝耀.铝硅合金热疲劳过程的研究[J].兵器材料科学与工程,1993(2):40-44. YANG D X,LI X Y,WANG R Y.Research on thermal fatigue process of aluminum silicon alloy[J].Ordnance Material Science and Engineering,1993(2):40-44.
[1] 山泉, 张亚峰, 张哲轩, 李祖来, 蒋业华, 王鹏飞. 钨含量对WCP/钢基表层复合材料压缩性能及热疲劳行为的影响[J]. 材料工程, 2019, 47(2): 115-121.
[2] 齐红宇, 马立强, 李少林, 杨晓光, 王亚梅, 魏洪亮. 等离子热障涂层构件高温热疲劳寿命预测研究[J]. 材料工程, 2014, 0(7): 67-72.
[3] 朱荣华, 刚铁, 万楚豪. 基于声发射和双谱分析的铝合金损伤原位监测研究[J]. 材料工程, 2013, 0(5): 67-72.
[4] 胡燕慧, 钟群鹏, 张峥, 韩邦成. 超声疲劳试验方法对S06钢疲劳性能及裂纹萌生机制的影响[J]. 材料工程, 2011, 0(2): 26-30.
[5] 杜洪奎, 孔凡玉. 低周疲劳下16MnR微孔的裂纹萌生与扩展[J]. 材料工程, 2008, 0(3): 40-43.
[6] 蔡建明, 李臻熙, 曹春晓, 黄旭, 雷强, 张元伟. Ti60钛合金中富钕稀土相颗粒对叶片室温振动疲劳性能的影响[J]. 材料工程, 2007, 0(8): 57-60.
[7] 韩增祥. 金属热疲劳a-N曲线测定方法的研究[J]. 材料工程, 2007, 0(11): 45-48,53.
[8] 李志军, 周兰章, 郭建亭, 姚俊. 返回料添加比例对K44合金热疲劳性能的影响[J]. 材料工程, 2005, 0(8): 24-27.
[9] 曾燕屏, 张麦仓, 董建新, 张丽娜, 谢锡善. 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究[J]. 材料工程, 2005, 0(3): 10-13,17.
[10] 许珞萍, 吴晓春, 邵光杰, 闵永安. 4Cr5MoSiV1, 8407钢的热疲劳性能[J]. 材料工程, 2001, 0(2): 3-7.
[11] 周凤云, 熊惟皓, 明文龙, 肖建中. 无钴Ti(C,N)基金属陶瓷的热疲劳行为[J]. 材料工程, 1998, 0(4): 45-48.
[12] 张庆玲, 居学宁, 王庆如, 杨素荣, 夏绍玉. Ti-15-3钛合金的疲劳断裂行为研究[J]. 材料工程, 1998, 0(3): 25-28.
[13] 赵爱国, 钟培道, 习年生, 陶春虎. 高压涡轮导向叶片裂纹分析[J]. 材料工程, 1998, 0(12): 35-38.
[14] 陈美英, 刘志静. 环境、频率、介质作用方式对35NCD16钢疲劳性能的影响[J]. 材料工程, 1993, 0(8): 15-18.
[15] 伊晓, 王德尊, 洪班德, 孟庆昌. Inconel 718合金高温低周疲劳裂纹萌生机制的研究[J]. 材料工程, 1993, 0(2): 10-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn