Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 141-148    DOI: 10.11868/j.issn.1001-4381.2017.000254
  综述 本期目录 | 过刊浏览 | 高级检索 |
镁合金摩擦焊的研究进展
游国强1,2, 郭伟1, 张秀丽1, 文恒玉1, 沈鹭1
1. 重庆大学 材料科学与工程学院, 重庆 400045;
2. 国家镁合金材料工程技术研究中心, 重庆 400044
Research Progress in Friction Welding of Magnesium Alloy
YOU Guo-qiang1,2, GUO Wei1, ZHANG Xiu-li1, WEN Heng-yu1, SHEN Lu1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400045, China;
2. National Engineering Research Center for Magnesium Alloys, Chongqing 400044, China
全文: PDF(3154 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 介绍了摩擦焊的基本原理及特点,综述了镁合金摩擦焊的研究进展,重点讨论了Mg-Mg同种材料和Mg-Al异种材料摩擦焊工艺、连接机理、接头微观组织及其力学性能。同时分析了目前研究中存在的问题,指出镁合金摩擦焊接头的三维温度场、应力应变场、塑性流变机制等研究尚需进一步完善,此外工艺优化和设置成分过渡层是获得优质摩擦焊接头的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
游国强
郭伟
张秀丽
文恒玉
沈鹭
关键词 镁合金摩擦焊微观组织力学性能研究进展    
Abstract:The basic principles and features of friction welding were introduced.The research progresses in friction welding of Mg alloys were reviewed. The process, joining mechanism, microstructure and mechanical properties of Mg-Mg similar and Mg-Al dissimilar friction welded joints were primarily discussed. Meanwhile, the current problems were analyzed. It was pointed out that the temperature field, stress-strain field and plastic flow during the friction welding process of Mg alloys require further investigation. Furthermore, the future development should focus on the optimization of process and intermediate layer to obtain high quality joints.
Key wordsmagnesium alloy    friction welding    microstructure    mechanical property    research progress
收稿日期: 2017-03-06      出版日期: 2018-01-18
中图分类号:  TG146.2+2  
通讯作者: 游国强(1978-),男,博士,副教授,从事轻合金材料及其成型技术的研究,联系地址:重庆市沙坪坝区沙正街174号重庆大学材料科学与工程学院(400045),E-mail:ygq@cqu.edu.cn     E-mail: ygq@cqu.edu.cn
引用本文:   
游国强, 郭伟, 张秀丽, 文恒玉, 沈鹭. 镁合金摩擦焊的研究进展[J]. 材料工程, 2018, 46(1): 141-148.
YOU Guo-qiang, GUO Wei, ZHANG Xiu-li, WEN Heng-yu, SHEN Lu. Research Progress in Friction Welding of Magnesium Alloy. Journal of Materials Engineering, 2018, 46(1): 141-148.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000254      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/141
[1] PAN F S, YANG M B, CHEN X H. A review on casting magnesium alloys:modification of commercial alloys and development of new alloys[J]. Journal of Materials Science and Technology, 2016, 32(12):1211-1221.
[2] 赵怿, 董刚, 赵博. 镁合金在航空领域应用的研究进展[J]. 有色金属工程, 2015, 5(2):23-27. ZHAO Y, DONG G, ZHAO B. Research progress of magnesium alloy application in aviation manufacturing[J]. Nonferrous Metals Engineering, 2015, 5(2):23-27.
[3] 林君, 张大童, 张文,等. 前进速率对搅拌摩擦加工ZK60镁合金组织和力学性能的影响[J]. 航空材料学报, 2017, 37(1):52-58. LIN J, ZHANG D T, ZHANG W, et al. Influence of processing speed on microstructure and mechanical properties of ZK60 magnesium alloy prepared by friction stir processing[J]. Journal of Aeronautical Materials, 2017, 37(1):52-58.
[4] 马宝霞, 赵建勋, 王丽萍,等. 镁合金焊接热裂纹的研究进展[J]. 材料导报, 2016, 30(3):81-85. MA B X, ZHAO J X, WANG L P, et al. Research progress of welding hot crack of magnesium alloys[J]. Materials Review, 2016, 30(3):81-85.
[5] 游国强, 杜娟, 谭霞,等. 压铸镁合金焊接气孔问题研究现状及发展[J]. 功能材料, 2013, 44(4):463-467. YOU G Q, DU J, TAN X, et al. Research progress and development of welding porosity of die-casting magnesium alloy[J]. Journal of Functional Materials, 2013, 44(4):463-467.
[6] 游国强, 王向杰, 齐冬亮,等. 线能量对挤压AZ91D镁合金GTAW焊接接头组织与性能的影响[J]. 材料工程, 2013(10):57-63. YOU G Q, WANG X J, QI D L, et al. Effect of line energy on the microstructure and properties of GTAW welded hot extruded AZ91D magnesium alloy joints[J].Journal of Materials Engineering, 2013(10):57-63.
[7] 曾承宗, 林巧力, 曹睿,等. 冷金属过渡条件下AZ61镁合金在两种钢板上的润湿行为[J]. 材料工程, 2017, 45(4):21-26. ZENG C Z, LIN Q L, CAO R, et al. Wetting behavior of molten AZ61 magnesium alloy on two different steel plates under the cold metal transfer condition[J]. Journal of Materials Engineering, 2017, 45(4):21-26.
[8] 王涛, 曹睿, 陈剑虹,等. 镁和钛异种金属冷金属过渡焊接接头微观组织及力学性能的分析[J]. 机械工程学报, 2014, 50(4):75-79. WANG T, CAO R, CHEN J H, et al. Analysis of microstructure and mechanical properties for welding joints of dissimilar metals between magnesium and titanium by cold metal transfer method[J]. Journal of Mechanical Engineering, 2014, 50(4):75-79.
[9] UDAY M B, FAUZI M N A, ZUHAILAWATI H, et al. Advances in friction welding process:a review[J]. Science & Technology of Welding & Joining, 2010, 15(7):534-558.
[10] 周军, 秦国梁, 齐秀滨. 石油钻杆形变热处理摩擦焊工艺[J]. 焊接学报, 2011, 32(8):1-4. ZHOU J, QIN G L, QI X B. Friction welding process with thermomechanical heat treat for oil drill pipe[J]. Transactions of the China Welding Institution, 2011, 32(8):1-4.
[11] 钟伟军. CG-1600惯性摩擦对焊机简介[J]. 机械管理开发, 2012(3):78-79. ZHONG W J. Brief introduction of inertia friction welding[J]. Mechanical Management and Development, 2012(3):78-79.
[12] 罗键, 陈欢, 刘姗姗. 惯性摩擦焊接头特性的研究现状[J]. 焊接, 2017(1):13-17. LUO J, CHEN H, LIU S S. Research status of inertia friction welded joint performance[J]. Welding & Joining, 2017(1):13-17.
[13] GUO W, YOU G, YUAN G, et al. Microstructure and mechanical properties of dissimilar inertia friction welding of 7A04 aluminum alloy to AZ31 magnesium alloy[J]. Journal of Alloys & Compounds, 2017, 695:3267-3277.
[14] 杜随更, 段立宇, 吴诗惇,等. 半自然热电偶测温法——一种测量摩擦界面温度及其分布的新方法[J]. 焊接, 1996(7):5-9. DU S G, DUAN L Y, WU S D, et al. Temperature measurement with semi-thermal couple[J]. Welding & Joining, 1996(7):5-9.
[15] LIR D, LI J L, XIONG J T, et al. Friction heat production and atom diffusion behaviors during Mg-Ti rotating friction welding process[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(11):2665-2671.
[16] 姬书得, 刘建光, 张利国,等. 材料流动对连续驱动摩擦焊飞边形成的影响[J]. 焊接学报, 2013, 34(4):31-34. JI S D,LIU J G, ZHANG L G, et al. Effect of material flow on flash formation during continuous driven friction welding[J]. Transactions of the China Welding Institution, 2013, 34(4):31-34.
[17] 才荫先, 孙松涛, 朱桂芝,等. 摩擦焊加热过程中变形层和高温区的扩展过程[J]. 焊接学报, 1984,5(2):61-68. CAI Y X, SUN S T, ZHU G Z, et al. The widening process of the deformation layer and the high temperature area in friction welding[J]. Transactions of the China Welding Institution, 1984,5(2):61-68.
[18] XIONG J T, LI J L, WEI Y N, et al. An analytical model of steady-state continuous drive friction welding[J]. Acta Materialia, 2013, 61(5):1662-1675.
[19] SCHMICKER D, NAUMENKO K, STRACKELJAN J. A robust simulation of direct drive friction welding with a modified Carreau fluid constitutive model[J]. Computer Methods in Applied Mechanics & Engineering, 2013, 265(8):186-194.
[20] ASAHINA T, KATO K, TOKISUE H. Friction welding of magnesium alloy AZ31[J]. Journal of Japan Institute of Light Metals, 1991, 41:674-680.
[21] ASAHINA T, KATOH K, TOKISUE H. Fatigue strength of friction welded joints of AZ31 magnesium alloy[J]. Journal of Japan Institute of Light Metals, 1994, 44(3):147-151.
[22] ASAHINA T, KATOH K, TOKISUE H. Mechanical properties of friction welded joints of pure magnesium[J]. Journal of Japan Institute of Light Metals, 1995, 45(8):453-458.
[23] KATO K, TOKISUE H. Friction welding of magnesium alloys[J]. Welding International, 1994, 8(6):452-457.
[24] PINHEIRO G A, OLEA C A W, DOSSANTOS J F, et al. Microstructural and mechanical behavior of friction welds in a high creep resistance magnesium alloy[J]. Advanced Engineering Materials, 2007, 9(9):757-763.
[25] PINHEIRO G A, PANKIEWICZ C G, HORT N, et al. Effects of welding conditions on microstructural transformations and mechanical properties in AE42-HP friction welded joints[J]. Welding in the World, 2008, 52(11/12):10-17.
[26] SRINIVASAN M, LOGANATHAN C, BALASUBRAMANIAN V, et al. Feasibility of joining AZ31B magnesium metal matrix composite by friction welding[J]. Materials & Design, 2011, 32(3):1672-1676.
[27] OGAWA K, YAMAGUCHI H, OCHI H, et al. Friction welding of AZ31 magnesium alloy[J]. Welding International, 2003, 17(11):879-885.
[28] KONG Y S, CHUN B K, KANG D M. Mechanical properties of friction joint of AZ31 Mg alloy[J]. Transactions of Materials Processing, 2010, 19(5):277-282.
[29] KANG D M, KWAK J S, CHOI J W, et al. Optimization for friction welding of AZ31 Mg alloy by design of experiments[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2011, 10(4):64-69.
[30] KONG Y S, LEE J K, KANG D M. Friction welding and AE characteristics of magnesium alloy for lightweight ocean vehicle[J]. Journal of Ocean Engineering and Technology, 2011, 25(6):91-96.
[31] SHIN C M, KANG D M, CHOI J W, et al. Prediction of tensile strength for friction-welded magnesium alloy part by acoustic emission[J]. Journal of the Korean Society of Manufacturing Process Engineers, 2012, 11(2):34-39.
[32] KANG D M, SHIN C M, KWAK J S. A study on on-line prediction of tensile strength in friction welding of magnesium alloy by acoustic emission sensor[J]. Journal of Computational & Theoretical Nanoscience, 2012, 15(1):346-350.
[33] FUKUMOTO S, ONO T, TANAKA S, et al. Hot-heavy-worked microstructures in friction weld joints of magnesium alloy AZ31[J]. Journal of Japan Institute of Light Metals, 2001, 51(10):563-567.
[34] FUKUMOTO S, TANAKA S, ONO T, et al. Microstructural development in friction welded AZ31 magnesium alloy[J]. Materials Transactions, 2006, 47(4):1071-1076.
[35] FUKUMOTO S, YAMAMOTO D, TOMITA T, et al. Effect of post weld heat treatment on microstructures and mechanical properties of AZ31B friction welded joint[J]. Materials Transactions, 2007, 48(1):44-52.
[36] KATOH K, ASAHINA T, TOKISUE H. Friction welding of cast-to-wrought magnesium alloy[J]. Journal of Japan Institute of Light Metals, 1994, 44(10):562-566.
[37] FUKUMOTO S, ONO T, TANAKA S, et al. Microstructures of friction welded joints of AZ31 to AM60 magnesium alloys[J]. Materials Science Forum, 2003, 419/422:399-406.
[38] LIU P, LI Y, GENG H, et al. Microstructure characteristics in TIG welded joint of Mg/Al dissimilar materials[J]. Materials Letters, 2007, 61(6):1288-1291.
[39] 张燕, 杨涛涛. 焊接线能量对汽车用镁-铝MIG焊接接头组织和性能的影响[J]. 热加工工艺, 2015,44(9):243-245. ZHANG Y, YANG T T. Effect of welding heat input on microstructure and properties of Mg-Al MIG welded joints[J]. Hot Working Technology, 2015, 44(9):243-245.
[40] ZHOU D W, TIAN W, XU S H, et al. Microstructure and mechanical properties of magnesium/aluminum alloy laser welding[J]. Rare Metal Materials and Engineering, 2015, 44(10):2440-2444.
[41] MOROZUMI S, SAKURAI T, MINEGISHI T, et al. Strength and structure of the bonding interface in friction-welded 1050 aluminum and AZ31 magnesium alloy joint[J]. Journal of Japan Institute of Light Metals, 1990, 40(3):209-214.
[42] KATOH K, ASAHINA T, TOKISUE H. Mechanical properties of friction welded joints of AZ31 magnesium alloy to 1050 aluminum[J]. Journal of Japan Institute of Light Metals, 1995, 45(5):255-260.
[43] 梁志达. 纯铝/镁合金异种金属连续驱动轴向摩擦焊接工艺[D]. 济南:山东大学, 2016. LIANG Z D. Continuous drive friction welding of dissimilar metal between magnesium and aluminum[D]. Jinan:Shandong University, 2016.
[44] LIANG Z D, QIN G L, WANG L Y, et al. Microstructural characterization and mechanical properties of dissimilar friction welding of 1060 aluminum to AZ31B magnesium alloy[J]. Materials Science and Engineering:A, 2015, 645:170-180.
[45] LIANG Z D, QIN G L, MA H, et al. The constitutional liquation at the interface of Al/Mg friction welding joints[J]. Science and Technology of Welding and Joining, 2017, 22(5):363-372.
[46] KIMURA M, FUJI A, SHIBATA S. Joint properties of friction welded joint between pure magnesium and pure aluminium with post-weld heat treatment[J]. Materials & Design, 2015, 85:169-179.
[47] KATO K, TOKISUE H. Dissimilar friction welding of aluminium alloys to other materials[J]. Welding International, 2004, 18(11):861-867.
[48] LIANG Z D, QIN G L, GENG P H, et al. Continuous drive friction welding of 5A33 Al alloy to AZ31B Mg alloy[J]. Journal of Manufacturing Processes, 2017, 25:153-162.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[3] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[4] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[5] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[6] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[7] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[8] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[9] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[10] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[11] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[12] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[13] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[14] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[15] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn