Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 134-143    DOI: 10.11868/j.issn.1001-4381.2017.000256
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理
郭军1,2, 杨卯生2, 卢德宏3, 李新宇2,3
1. 北京科技大学 钢铁共性技术协同创新中心, 北京 100083;
2. 钢铁研究总院 特殊钢研究所, 北京 100081;
3. 昆明理工大学 材料科学与工程学院, 昆明 650093
Rotational bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel
GUO Jun1,2, YANG Mao-sheng2, LU De-hong3, LI Xin-yu2,3
1. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China;
2. Institute for Special Steel, Central Iron and Steel Research Institute, Beijing 100081, China;
3. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
全文: PDF(12822 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过室温旋转弯曲疲劳实验研究Cr4Mo4V轴承钢旋转弯曲疲劳寿命和疲劳裂纹萌生机理。在PQ1-6型旋转弯曲疲劳试验机上进行旋转弯曲疲劳实验,通过升降法测得疲劳极限和S-N曲线,使用SEM对疲劳试样断口进行观察,分析起裂源类型和裂纹扩展行为,通过缺陷所在位置的名义应力幅与测得缺陷疲劳极限强度的比值σ'/σw,defect分析了缺陷尺寸对疲劳寿命的影响。结果表明:Cr4Mo4V轴承钢的安全疲劳极限为1019MPa,Cr4Mo4V轴承钢S-N曲线数据呈下降趋势且分散性较大。断口观察表明,Cr4Mo4V轴承钢起裂类型有5种,即近表面碳化物起裂、近表面非金属夹杂物起裂、内部非金属夹杂物起裂和内部碳化物起裂。内部起裂断口有"鱼眼"特征;疲劳寿命超过107周次,内部起裂源碳化物周围形成GBF区。Cr4Mo4V轴承钢中碳化物在循环应力作用下发生破碎,破碎的碳化物加大了裂纹扩展速率。使用关键碳化物体积密度能够定量地分析碳化物尺寸对近表面起裂的影响。σ'/σw,defect都大于1,σ'/σw,defect越大疲劳寿命越短。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭军
杨卯生
卢德宏
李新宇
关键词 轴承钢旋转弯曲疲劳碳化物夹杂物    
Abstract:The rotational bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel were studied by means of rotating bending fatigue test at room temperature. The rotational bending fatigue test was carried out on a PQ1-6 rotary bending fatigue test machine. The fatigue limit and S-N curve were measured by the up-down method. The fracture of the fatigue specimen was observed by SEM, and the crack initiation source type and crack propagation behavior were analyzed. The effect of defect size on fatigue life was analyzed by the ratio σ'/σw,defect of the nominal stress amplitude at the location of the defect to the measured ultimate fatigue strength of the defect. The results show that the safety fatigue limit of Cr4Mo4V bearing steel is 1019MPa, and the S-N curve data of Cr4Mo4V bearing steel shows a downward trend and a large dispersion. Fracture observation shows that there are five types of initiation, namely surface defects leading to initiation, near-surface carbides leading to initiation, near-surface non-metallic inclusions leading to initiation, internal non-metallic inclusions leading to initiation and internal carbides initiation. Internal crack fractures have fish-eye features. When the fatigue life exceeds 107 cycles, a granular bright area (GBF) is observed in the vicinity around the internal initiation source carbides. The fatigue fracture was observed with broken carbides, and the broken carbide increased the crack growth rate. Carbides cracking can occur in the bearing steel Cr4Mo4V under the action of cyclic stresses. These fractured carbides attract the crack tip leading to faster growth rate. Influence of carbide size on the near surface initiation can be quantitatively analyzed by using the critical volume density of carbides. The values of σ'/σw,defect are higher than 1 and the larger the σ'/σw,defect, the shorter the fatigue life is.
Key wordsbearing steel    rotational bending fatigue    carbide    inclusion
收稿日期: 2017-03-07      出版日期: 2019-07-19
中图分类号:  TG115.57  
通讯作者: 杨卯生(1963-),男,教授,博士,主要研究方向:轴承钢,联系地址:北京市海淀区学院南路76号钢铁研究总院特殊钢研究所(100081),mshyang@sina.com     E-mail: mshyang@sina.com
引用本文:   
郭军, 杨卯生, 卢德宏, 李新宇. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理[J]. 材料工程, 2019, 47(7): 134-143.
GUO Jun, YANG Mao-sheng, LU De-hong, LI Xin-yu. Rotational bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel. Journal of Materials Engineering, 2019, 47(7): 134-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000256      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/134
[1] 王博,杨卯生,赵昆渝. 双真空冶炼高合金轴承钢后真空表面渗碳疲劳性能的研究[J]. 真空科学与技术学报,2016, 36(7):838-843. WANG B,YANG M S,ZHAO K Y. Fatigue resistance of surface-carburized Cr-Co-Mo-Ni bearing steel refined by vacuum melting[J]. Chinese Journal of Vacuum Science and Technology,2016, 36(7):838-843.
[2] 韩顺,厉勇,王春旭,等. AF1410钢的旋转弯曲疲劳破坏行为[J].钢铁,2013, 48(3):82-85. HAN S,LI Y,WANG C X, et al. Behavior of rotating-bending fatigue failure of AF1410 steel[J]. Iron and Steel, 2013, 48(3):82-85.
[3] 廉海强,杨卯生,孙世清. 新型Cr-Ni-Mo渗碳轴承钢旋转弯曲疲劳性能研究[J]. 真空科学与技术学报,2016, 36(7):779-783. LIAN H Q,YANG M S,SUN S Q. Rotating bending fatigue properties of carburized Ni-Cr-Mo bearing steel[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(7):779-783.
[4] SAKAI T, NAKAGAWA A,OGUMA N, et al. A review on fatigue fracture modes of structural metallic materials in very high cycle regime[J]. International Journal of Fatigue, 2016, 93:339-351.
[5] 鲁连涛,李伟,张继旺,等. GCr15钢旋转弯曲超长寿命疲劳性能分析[J].金属学报,2009, 45(1):73-78. LU L T, LI W, ZHANG J W,et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15[J]. Acta Metallurgica Sinica,2009, 45(1):73-78.
[6] MURAKAMI Y,YOKOYAMA N N,NAGATA J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue & Fracture of Engineering Materials & Structures,2002,25:735-746.
[7] 周承恩,洪友士. GCr15钢超高周疲劳行为的实验研究[J].机械强度,2004,26(增刊1):157-160. ZHOU C E,HONG Y S. Experimental investigation on very-high-cycle fatigue of GCr15 steel[J]. Journal of Mechanical Strength,2004, 26(Suppl 1):157-160.
[8] GILBERT J L,PIEHLER H R. On the nature and crystallog-raphic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 1993, 24(3):669-680.
[9] SHIOZAWA K,MORⅡ Y,NISHINO S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J]. International Journal of Fatigue, 2006, 28(11):1521-1532.
[10] MEURLING F, MELANDER A, TIDESTEN M, et al. Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels[J]. International Journal of Fatigue, 2001, 23(3):215-224.
[11] FUKAURA K,YOKOYAMA Y,YOKOI D, et al. Fatigue of cold-work tool steels:effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations[J]. Metallurgical and Materials Transactions A, 2004, 35(4):1289-1300.
[12] PICAS I,CUADRADO N,CASELLAS D, et al. Microstructural effects on the fatigue crack nucleation in cold work tool steels[J]. Procedia Engineering, 2010, 2(1):1777-1785.
[13] GÜNTHER J,KREWERTH D,LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 94:236-245.
[14] SOHAR C R,BETZWAR-KOTAS A,GIERL C, et al. Gigac-ycle fatigue behavior of a high chromium alloyed cold work tool steel[J]. International Journal of Fatigue, 2008, 30(7):1137-1149
[15] MUGHRABI H. On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25:755-764.
[16] IQBAL A,KING J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels[J]. International Journal of Fatigue, 1990, 12(4):234-244.
[17] RESCALVO J A,AVERBACH BL. Fracture and fatigue in M-50 and 18-4-1 high speed steels[J]. Metallurgical and Materials Transactions A, 1979, 10(9):1265-1271.
[18] MURAKAMI Y. Metal fatigue, effect of defects and nonme-tallic inclusions[M]. Oxford:Elsevier,2002:35-55.
[1] 王志远, 邢志国, 王海斗, 单德彬. 非金属夹杂物特性对钢铁材料疲劳性能影响的研究进展[J]. 材料工程, 2020, 48(5): 1-12.
[2] 蔡欣, 孙明月, 王卫, 康秀红, 李殿中. 8Cr4Mo4Ni4V航空轴承钢高温奥氏体晶粒长大的数学模型[J]. 材料工程, 2018, 46(9): 131-137.
[3] 张彩军, 高立娜, 胡闻佳, 朱立光. 正三棱锥形夹杂物诱导晶内铁素体形核模型研究[J]. 材料工程, 2017, 45(7): 27-33.
[4] 马超, 罗海文. GCr15轴承钢热处理过程中碳化物的析出与演变行为[J]. 材料工程, 2017, 45(6): 97-103.
[5] 孙世清. 无碳化物贝氏体钢渗碳后的深冷处理[J]. 材料工程, 2017, 45(5): 94-99.
[6] 彭世广, 宋仁伯, 王威, 谭志东, 蔡长宏, 王林炜杰. 热处理工艺对新型轻质奥氏体耐磨钢的组织与力学性能的影响[J]. 材料工程, 2016, 44(9): 24-31.
[7] 李永德, 张莉莉, 张冲, 贺莹莹. SUJ2轴承钢超长寿命疲劳行为研究[J]. 材料工程, 2016, 44(8): 85-92.
[8] 邹磊, 武颖, 岑启宏. 电脉冲处理对W6Mo5Cr4V2高速钢的影响[J]. 材料工程, 2016, 44(2): 23-27.
[9] 谢孝昌, 李旭东, 汤春峰, 付书红. 直接时效对GH4169合金应力集中敏感性的影响[J]. 材料工程, 2016, 44(2): 88-93.
[10] 王晶, 尚新春, 路民旭, 张雷. 316L不锈钢在不同环境中点蚀形核研究[J]. 材料工程, 2015, 43(9): 12-18.
[11] 李振兴, 李长生, 马永强, 李涛, 张建. 变形终止温度对GCr15轴承钢显微组织的影响[J]. 材料工程, 2015, 43(10): 28-34.
[12] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[13] 李永德, 徐娜, 郭卫民, 吴晓峰, 时军波, 刘树伟. 高压气相热充氢对SUJ2轴承钢超高周疲劳行为的影响[J]. 材料工程, 2014, 0(2): 87-93,98.
[14] 孙超凡, 蔡庆伍, 陈振华, 陈宏振. 冷却制度对铁素体基Ti-Mo微合金钢超细碳化物析出行为的影响[J]. 材料工程, 2014, 0(10): 47-52.
[15] 陈雨来, 董长征, 蔡庆伍, 万德成, 李亮, 齐越. Mo和Ni对高强无碳化物贝氏体钢组织转变与力学性能的影响[J]. 材料工程, 2013, 0(9): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn