Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (8): 78-83    DOI: 10.11868/j.issn.1001-4381.2017.000257
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响
亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜
华北理工大学 材料科学与工程学院 河北省无机非金属材料重点实验室, 河北 唐山 063210
Influences of Eu2O3 Doping Amount and Sintering Temperature on Properties of Al2O3-based Microwave Ceramic Materials
KANG Jing-rui, DONG Gui-xia, LYU Yi-nan, LI Lei, HAN Wei-dan, ZHANG Xi
Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(2327 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 选用MgO-CuO-TiO2-Eu2O3添加剂作为氧化铝陶瓷的烧结助剂,在空气气氛下经过常压烧结制备Al2O3陶瓷。采用XRD,SEM及EDS等方法研究Eu2O3掺杂量以及烧结温度对Al2O3基微波陶瓷样品物相组成,微观结构和介电性能的影响。结果表明:添加Eu2O3的Al2O3陶瓷中,均存在Al2Eu2O9次晶相,且随着Eu2O3含量的增加,Al2Eu2O9相增加; 随着Eu2O3添加量的增加,Al2O3陶瓷试样致密度先增加后降低;随着烧结温度的增加,Al2O3陶瓷的介电常数和品质因数Q·f值先增加后降低。烧结温度为1450℃,Eu2O3添加量为0.25%(质量分数)时,烧结体的相对密度达到最大值98.21%,且Al2O3陶瓷的介电性能较好:介电常数为10.05,品质因数Q·f为37984GHz。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
亢静锐
董桂霞
吕易楠
李雷
韩伟丹
张茜
关键词 氧化铝陶瓷Eu2O3掺杂致密度介电性能    
Abstract:A kind of alumina ceramic was prepared by atmospheric pressure sintering under air atmosphere using MgO-CuO-TiO2-Eu2O3 as sintering additive. The effect of Eu2O3 doping amount and sintering temperature on the phase composition, microstructure as well as dielectric properties of Al2O3-based microwave ceramic samples was studied by XRD, SEM and EDS. The results show that the Al2Eu2O9 secondary crystalline phase is present in all Al2O3 ceramics with Eu2O3 addition, and the Al2Eu2O9 phase is enhanced with the increase of Eu2O3 content. With higher Eu2O3 content, the density of Al2O3 ceramics increases first and then decreases. As sintering temperature increases, the dielectric constant and quality factor Q·f of Al2O3 ceramics increase first and then decrease. When the sintering temperature rises up to 1450℃ and the content of Eu2O3 is 0.25%(mass fraction), the relative density of the sintered body reaches to the maximum of 98.21%, and the dielectric properties of the Al2O3 ceramics are superior with the dielectric constant 10.05 and the quality factor Q·f 37984GHz.
Key wordsalumina ceramic    Eu2O3 doping    density    dielectric property
收稿日期: 2017-03-07      出版日期: 2018-08-17
中图分类号:  TQ174  
通讯作者: 董桂霞(1966-),女,高级工程师,博士,现从事功能陶瓷研究,联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学材料科学与工程学院(063210),E-mail:dgxdgx01@163.com     E-mail: dgxdgx01@163.com
引用本文:   
亢静锐, 董桂霞, 吕易楠, 李雷, 韩伟丹, 张茜. Eu2O3掺杂量及烧结温度对氧化铝基微波陶瓷性能的影响[J]. 材料工程, 2018, 46(8): 78-83.
KANG Jing-rui, DONG Gui-xia, LYU Yi-nan, LI Lei, HAN Wei-dan, ZHANG Xi. Influences of Eu2O3 Doping Amount and Sintering Temperature on Properties of Al2O3-based Microwave Ceramic Materials. Journal of Materials Engineering, 2018, 46(8): 78-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000257      或      http://jme.biam.ac.cn/CN/Y2018/V46/I8/78
[1] 张巨先. 低介电损耗、细晶Al2O3陶瓷材料应用性能研究[J]. 真空电子技术, 2013(8):19-22. ZHANG J X. Review on application properties of low dielectric loss and fine grained Al2O3 ceramics[J]. Vacuum Electronics,2013(8):19-22.
[2] 吴海涛, 赵丽萍. 微波介质陶瓷材料研究进展[J]. 济南大学学报(自然科学版), 2016, 30(3):177-183. WU H T, ZHAO L P. Microwave dielectric ceramics:a review[J]. Journal of University of Jinan(Science and Technology), 2016, 30(3):177-183.
[3] 杨旭东, 邹田春, 陈亚军,等. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程, 2016, 44(7):67-72. YANG X D, ZOU T C, CHEN Y J, et al. Fabrication and mechanical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J]. Journal of Materials Engineering, 2016, 44(7):67-72.
[4] CUMMINGS K A, RISBUD S H. Dielectric materials for window applications[J]. Journal of Physics and Chemistry of Solids, 2000, 61(4):551-560.
[5] ZIENTARA D, BUCKO M M, LIS J. Dielectric properties of aluminium nitride-γ-alon materials[J]. Journal of the European Ceramic Society, 2007, 27(13):4051-4054.
[6] 关振铎, 张中太, 焦金生.无机材料物理性能[M]. 北京:清华大学出版社, 1992:329-332.
[7] SIORES E, DO R D. Microwave applications in materials joining[J]. Journal of Materials Processing Technology, 1995, 48(1/4):619-625.
[8] SUHARYANTO, YAMANO Y, KOBAYASHI S. Secondary electron emission and surface charging evaluation of alumina ceramics and sapphire[J]. Dielectrics Electrical Insulation, 2006, 13(1):72-78.
[9] 李风光, 唐世艳, 刘富初,等. 淀粉对氧化铝基陶瓷型芯性能的影响[J]. 航空材料学报, 2016, 36(6):86-91. LI F G, TANG S Y, LIU F C, et al. Effects of starch on properties of alumina-based ceramic cores[J]. Journal of Aeronautical Materials, 2016, 36(6):86-91.
[10] WANG H J, LI W, TERNSTRÖM C, et al. Effect of Mg doping on microwave dielectric properties of translucent polycrystalline alumina ceramic[J]. Ceramics International, 2013, 39(2):1583-1586.
[11] JIN W, YIN W, YU S, et al. Microwave dielectric properties of pure YAG transparent ceramics[J]. Materials Letters, 2016, 173:47-49.
[12] YEOMANS J A. Ductile particle ceramic matrix composites-scientific curiosities or engineering materials[J]. Journal of the European Ceramic Society, 2008, 28(7):1543-1550.
[13] GU Y J, HUANG J L, LI Q, et al. Low-temperature firing and microwave dielectric properties of 16CaO-9Li2O-12Sm2O3-63TiO2 ceramics with V2O5 addition[J]. Journal of the European Ceramic Society, 2008, 28(16):3149-3153.
[14] 姚立春, 慕玮, 陈柏, 等. 烧结助剂MnCO3对0.80Sm(Mg1/2Ti1/2)O3-0.20Ca0.8Sr0.2TiO3微波介质陶瓷的性能影响[J]. 人工晶体学报, 2014, 43(3):537-542. YAO L C, MU W, CHEN B, et al. Effect of MnCO3 additive on sintering behavior and properties of 0.80Sm(Mg1/2Ti1/2)O3-0.20Ca0.8Sr0.2TiO3 microwave dielectric ceramics[J]. Journal of Synthetic Crystals, 2014, 43(3):537-542.
[15] 荆慧, 鲁中良, 苗恺,等. 凝胶注模空心叶片氧化铝基陶瓷铸型的中温强度[J]. 材料工程, 2015, 43(4):1-7. JING H, LU Z L, MIAO K, et al. Medium temperature strength of alumina-based ceramic mold of hollow turbine blade manufactured by gelcasting[J]. Journal of Materials Engineering, 2015, 43(4):1-7.
[16] WU Y, ZHANG Y, HUANG X, et al. Microstructural development and mechanical properties of self-reinforced alumina with CAS addition[J]. Journal of the European Ceramic Society, 2001, 21(5):581-587.
[17] CHEN J M, WANG H P, FENG S Q, et al. Effects of CaSiO3 addition on sintering behavior and microwave dielectric properties of Al2O3 ceramics[J].Ceramic International,2011,37(3):989-993.
[18] SATHIYAKUMAR M, GNANAM F D. Influence of MnO and TiO2 additives on density, microstructure and mechanical properties of Al2O3[J].Ceramics International,2002,28(2):195-200.
[19] 刘于昌, 黄晓巍. 液相烧结氧化铝陶瓷及其烧结动力学分析[J]. 硅酸盐学报, 2006, 34(6):647-651. LIU Y C, HUANG X W. Liquid-phase-sintering of alumina ceramics and sintering kinetic analysis[J]. Journal of the Chinese Ceramic Society, 2006, 34(6):647-651.
[20] 张斌, 王焕平, 马红萍, 等. CuO-TiO2复合助剂低温烧结氧化铝陶瓷的机理(I)[J]. 材料研究学报, 2009(5):534-540. ZHANG B, WANG H P, MA H P, et al. Mechanism of lowering the sintering temperature of Al2O3 ceramic by the addition of CuO-TiO2(I)[J]. Chinese Journal of Materials Research, 2009(5):534-540.
[21] 张茜, 董桂霞, 韩伟丹, 等. 烧结温度和TiO2掺杂量对氧化铝基微波陶瓷性能的影响[J]. 硅酸盐学报, 2016, 44(9):1276-1280. ZHANG X, DONG G X, HAN W D, et al. Influences of temperature and TiO2 amount on properties of Al2O3-based microwave ceramic materials[J]. Journal of the Chinese Ceramic Society, 2016, 44(9):1276-1280.
[22] WANG H, LIN H, LI W, et al. Effect of La doping on microwave dielectric properties of translucent polycrystalline alumina ceramic[J]. Ceramics International, 2013, 39(5):4907-4911.
[23] 张茜, 董桂霞, 瞿海洋, 等. 溶胶-凝胶法制备Al2O3粉体及其陶瓷的性能研究[J]. 人工晶体学报, 2016,45(1):151-156. ZHANG X, DONG G X, QU H Y, et al. Preparation of Al2O3 powders by sol-gel process and properties of Al2O3 ceramics[J]. Journal of Synthetic Crystals, 2016, 45(1):151-156.
[24] 杨涛, 袁昌来, 陈国华, 等. Al2O3掺杂对Ca0.2Sr0.05Li0.375Sm0.375TiO3微波介电性能的影响[J]. 人工晶体学报, 2015, 44(3):655-671. YANG T, YUAN C L, CHEN G H, et al. Effects of Al2O3 doping on microwave dielectric properties of Ca0.2Sr0.05Li0.375Sm0.375TiO3[J]. Journal of Synthetic Crystals, 2015, 44(3):655-671.
[25] WU J M, LU W Z, LEI W, et al. Preparation of ZnAlO4-based microwave dielectric ceramics and GPS antenna by aqueous gelcasting[J]. Materials Research Bulletin, 2011, 46(9):1485-1489.
[1] 郭鸿霞, 张家萌, 王青敏, 毕科. 铁磁/铁电复合介质及其超材料结构微波性能[J]. 材料工程, 2020, 48(6): 43-49.
[2] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[3] 陈宇飞, 耿成宝, 郭红缘, 岳春艳, 柴铭茁. KH-SiO2/PES/BMI-F51复合材料的介电性能[J]. 材料工程, 2019, 47(8): 103-109.
[4] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[5] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[6] 邢星河, 曹峰, 彭志航, 曾祥雄. Co掺杂对CaBi2Nb2O9陶瓷结构和电学性能的影响[J]. 材料工程, 2018, 46(8): 36-42.
[7] 刘多, 刘景和, 周英豪, 宋晓国, 牛红伟, 冯吉才. 紫铜/Al2O3陶瓷/不锈钢复合结构钎焊接头残余应力研究[J]. 材料工程, 2018, 46(3): 61-66.
[8] 赵晓明, 刘元军. 铁氧体/碳化硅/石墨三层涂层复合材料介电性能[J]. 材料工程, 2017, 45(1): 33-37.
[9] 宋洪松, 赵天宇, 杨程. 表面处理对CCTO/PVDF复合材料介电性能的影响[J]. 材料工程, 2014, 0(8): 27-31.
[10] 禹胜林, 薛松柏, 尹邦跃, 黄薇. Al-Si电子封装材料粉末冶金法致密性研究[J]. 材料工程, 2014, 0(2): 45-50.
[11] 孙莉莉, 钟艳莉. 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程, 2013, 0(4): 17-22.
[12] 戴斌, 朱海奎, 周洪庆, 吴路燕, 岳振星. 含碱金属离子的CaO-B2O3-SiO2系玻璃陶瓷性能研究[J]. 材料工程, 2012, 0(8): 65-68,72.
[13] 肇研, 董昊, 胡建平, 李翔, 刘建华. 湿热循环对Nomex蜂窝/环氧树脂夹层复合材料性能的影响[J]. 材料工程, 2012, 0(6): 1-6.
[14] 孙雨薇, 王树彬, 张健. CBS涂层对多孔氮化硅高温高频介电性能的影响[J]. 材料工程, 2011, 0(2): 42-45.
[15] 胡建平, 蔡吉喆, 肇研, 刘建华. Nomex/氰酸酯树脂夹层复合材料耐湿热性研究[J]. 材料工程, 2010, 0(9): 58-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn