Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 82-90    DOI: 10.11868/j.issn.1001-4381.2017.000277
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
800MPa级Al-Zn-Mg-Cu系合金
杨守杰1,2, 邢清源1,2, 于海军1,2, 王玉灵1,2, 戴圣龙1,2
1. 中国航发北京航空材料研究院, 北京 100095;
2. 北京市先进铝合金材料及应用工程技术研究中心, 北京 100095
Al-Zn-Mg-Cu Alloys with Strength of 800MPa
YANG Shou-jie1,2, XING Qing-yuan1,2, YU Hai-jun1,2, WANG Yu-ling1,2, DAI Sheng-long1,2
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Technology Research Center of Advanced Aluminum Materials and Application, Beijing 100095, China
全文: PDF(5268 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过采用在线精炼、在线细化、热顶铸造等技术手段,成功在直接水冷半连续铸造设备上制备出了合金化元素总量达20%的Al-Zn-Mg-Cu系合金,打破了7000系铝合金合金化元素总量不高于14%的极限。利用金相显微镜、透射电镜进行微观组织观察,采用差热分析仪测试相转变温度,测试了硬度、拉伸性能并利用扫描电镜进行断口分析。该合金经过挤压、RRA热处理后,其抗拉强度、屈服强度和伸长率分别达到810.3,799.3MPa和3.4%。通过对单级时效动力学和三级时效动力学进行研究,确定了合金的最佳时效温度为120℃,而时效时间的可选择范围较大。Zn含量高达16.1%的铝合金中主要由未溶第二相和时效析出相η'相共同强化,未发现其他新析出相。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨守杰
邢清源
于海军
王玉灵
戴圣龙
关键词 超高强铝合金DC铸造RRA热处理力学性能    
Abstract:This research has produced Al-Zn-Mg-Cu alloy containing 20%(mass fraction,the same below) alloying elements by the Hot-top semi-continuous DC casting equipment, which has adopted purifying and refining on-line technologies. This alloy has broken the limit of 7000 Al-alloy containing no more than 14% alloying elements. The microstructure and fracture of the alloy were investigated by optical microscopy (OM), transmission electron microscopy (TEM) and scanning electron microscopy (SEM), the temperature of phases transformation was investigated by differential scanning calorimetry (DSC), and the hardness and tensile properties were also tested. The tensile strength, yield strength and elongation of this alloy can be up to 810.3, 799.3MPa and 3.4% by RRA heat-treatment after extrusion. Through the study on the single and tertiary-stage ageing treatment kinetics, the optimum ageing temperature 120℃ is identified and a wider range of aging time can be chosen. Moreover, no other precipitates are found in the alloy containing 16.1%Zn element,and the joint strengthening comes from the undissolved second phase and the ageing precipitation η' phase.
Key wordsultra-high strength Al alloy    DC casting    RRA heat treatment    mechanical property
收稿日期: 2017-03-14      出版日期: 2018-04-14
中图分类号:  TG146.2  
通讯作者: 杨守杰(1974-),男,博士,研究员,主要研究方向为航空铝合金,联系地址:北京市81信箱2分箱(100095),E-mail:13801325436@163.com     E-mail: 13801325436@163.com
引用本文:   
杨守杰, 邢清源, 于海军, 王玉灵, 戴圣龙. 800MPa级Al-Zn-Mg-Cu系合金[J]. 材料工程, 2018, 46(4): 82-90.
YANG Shou-jie, XING Qing-yuan, YU Hai-jun, WANG Yu-ling, DAI Sheng-long. Al-Zn-Mg-Cu Alloys with Strength of 800MPa. Journal of Materials Engineering, 2018, 46(4): 82-90.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000277      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/82
[1] 杨守杰, 杨霞. 高强度铝合金的研究进展[J]. 粉末冶金工程, 2010, 20(5):47-52. YANG S J, YANG X. Progress in high-strength aluminum alloy research[J]. Powder Metallurgy Industry, 2010, 20(5):47-52.
[2] DIXIT M, MISHR A R, SANKARAN K K. Structure-property correlations in Al 7050 and 7055 high-strength aluminium alloys[J]. Mater Sci Eng A, 2008, 478(1/2):163-172.
[3] HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 280(1):102-107.
[4] WARNER T. Recently-developed aluminium solutions for aerospace applications[J]. Materials Science Forum, 2006, 519/521(7):1271-1278.
[5] 肖亚庆, 谢水生, 刘静安, 等. 铝加工技术实用手册[M]. 北京:冶金工业出版社, 2004:176-196. XIAO Y Q, XIE S S, LIU J A, et al. Practical handbook of aluminium technology[M]. Beijing:Metallurgical Industry Press, 2004:176-196.
[6] 李锡武. 新型高强韧低淬火敏感性Al-Zn-Mg-Cu合金研究[D]. 北京:北京有色金属研究总院, 2009. LI X W. Research of a novel Al-Zn-Mg-Cu alloy with high strength high toughness and low quench sensitivity[D]. Beijing:General Research Institute for Nonferrous Metals, 2009.
[7] 刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9):1705-1715. LIU B, PENG C Q, WANG R C,et al. Recent development and prospects for giant plane aluminium alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9):1705-1715.
[8] NAKAI M, ETO T. New aspect of development of high strength aluminium alloys for aerospace applications[J]. Materials Science and Engineering:A, 2000, 285(1/2):62-68.
[9] HONO K, ZHANG Y, SAKURAI T, et al. Microstructure of a rapidly solidified Al-4V-2Fe ultra high strength aluminum alloy[J]. Materials Science and Engineering:A, 1998, 250(1):152-157.
[10] LOUZGUINE-LUZGIN D V, INOUE A. Investigation of a rapidly solidified Al-based nanocomposite with extremely high number density of precipitates[J]. Materials Science and Engineering:A, 2007,449/451:1026-1028.
[11] INOUE A, KIMURA H. Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum-based system[J]. Journal of Light Metals, 2001, 1(2):31-41.
[12] INOUE A, KIMURA H M, ZHANG T. High-strength aluminum and zirconium-based alloys containing nanoquasicrystalline particles[J]. Materials Science and Engineering:A, 2000:294/296(3):727-735.
[13] INOUE A, KIMURA H. High-strength aluminum alloys containing nanoquasicrystalline particles[J]. Materials Science and Engineering:A, 2000, 286(1):1-10.
[14] 杨守杰, 邢清源, 于海军, 等. 一种新型高锌Al-Zn-Mg-Cu合金的热处理工艺[J]. 材料工程, 2016, 44(12):41-47. YANG S J, XING Q Y, YU H J, etc. Heat-treatment processing of a new high zinc Al-Zn-Mg-Cu alloy[J]. Journal of Materials Engineering, 2016, 44(12):41-47.
[15] 潘复生, 张丁非. 铝合金及应用[M]. 北京:化学工业出版社, 2006. PAN F S, ZHANG D F. Aluminium alloy and its application[M]. Beijing:Chemical Industry Press, 2006.
[16] 滕海涛, 熊柏青, 张永安, 等. 高Zn含量Al-Zn-Mg-Cu系铝合金的凝固态显微组织[J]. 中国有色金属学报, 2015, 25(4):852-865. TENG H T, XIONG B Q, ZHANG Y A, et al. Solidification microstructure of high zinc-containing Al-Zn-Mg-Cu alloys[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4):852-865.
[17] 王祝堂, 田荣璋. 铝合金及其加工手册[M]. 长沙:中南大学出版社, 2005. WANG Z T, TIAN R Z. Aluminium alloy and its processing manual[M]. Changsha:Central South University Press, 2005.
[18] 王涛, 尹志民. 高强变形铝合金的研究现状和发展趋势[J]. 稀有金属, 2006, 30(2):197-202. WANG T, YIN Z M. Research status and development trend of ultra-high strength aluminum alloys[J]. Rare Metal, 2006, 30(2):197-202.
[19] 戴晓元, 夏长青, 孙振起. Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr合金的组织和性能[J]. 中国有色金属学报, 2007, 17(3):396-401. DAI X Y, XIA C Q, SUN Z Q. Microstructure and properties of Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(3):396-401.
[20] PAUL A, ZHANG Y. Heat treatment of 7XXX series aluminium alloys-some recent developments[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(2):2003-2017.
[21] 宁爱林. 析出相及其分布对高强铝合金力学性能的影响[D]. 长沙:中南大学, 2007:112-113. NING A L. The effect of precipitation and its distribution to high strength aluminium alloy[D]. Changsha:Central South University, 2007:112-113.
[22] 舒文祥, 侯陇刚, 刘君城, 等. 先进高强韧Al-Zn-Mg-Cu合金凝固和均匀化组织及相构成[J]. 北京科技大学学报, 2014, 36(11):1534-1539. SHU W X, HOU L G, LIU J C, et al. Microstructure and phase components of as-cast and homogenized advanced Al-Zn-Mg-Cu alloys with high strength and toughness[J]. Journal of University of Science and Technology Beijing, 2014, 36(11):1534-1539.
[23] KNIGHT S P, BIRBILIS N, MUDDLE B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys[J]. Corrosion Science, 2010, 52(12):4073-4080.
[24] de GEUSER F, DESCHAMPS A. Precipitate characterization in metallic systems by small-angle X-ray or neutron scattering[J].Comptes Rendus Physique, 2012, 13(4):246-256.
[25] 李国爱. 700MPa级超高强铝合金锻件成分设计及制备工艺研究[D]. 北京:北京航空材料研究院, 2012. LI G A. Research on the composition design and preparation technology of 700MPa ultra-high strength aluminium alloy[D]. Beijing:Beijing Institute of Aeronautical Materials, 2012.
[26] DESCHAMPS A, de GEUSER F. Quantitative characterization of precipitate microstructures in metallic alloys using small-angles scattering[J]. Metallurgical and Materials Transactions A, 2013, 44:77-86.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[3] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[4] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[5] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[6] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[7] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[10] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[11] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[12] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[13] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[14] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[15] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn