Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 19-26    DOI: 10.11868/j.issn.1001-4381.2017.000301
  综述 本期目录 | 过刊浏览 | 高级检索 |
生物医用镁合金腐蚀行为的研究进展
万天1,2, 宋述鹏1,2, 王今朝3, 周和荣2, 毛雨旭2, 熊少聪2, 李梦君2
1. 武汉科技大学 省部共建耐火材料与冶金国家重点实验室, 武汉 430081;
2. 武汉科技大学 材料与冶金学院, 武汉 430081;
3. 湖北大学 材料科学与工程学院, 武汉 430062
Research progress in corrosion behavior of biomedical magnesium alloys
WAN Tian1,2, SONG Shu-peng1,2, WANG Jin-zhao3, ZHOU He-rong2, MAO Yu-xu2, XIONG Shao-cong2, LI Meng-jun2
1. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;
2. College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
3. School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
全文: PDF(2205 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 近年来,镁合金作为生物可降解材料受到了越来越多研究者的关注,由于其具有良好的生物相容性、力学性能及可降解吸收等特点,被誉为一种"革命性的生物材料"。然而,由于腐蚀速率过快和存在局部腐蚀的缺点,目前的生物镁合金仍达不到临床应用的要求。本文从高纯化、合金化、热处理工艺、表面改性等方面综述了最近几年生物镁合金在提高腐蚀性能方面的研究进展,并从添加无毒性合金元素,适当的表面涂覆,先进的制备技术及热处理工艺方面,对如何研制出腐蚀性能更好的生物可降解材料进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万天
宋述鹏
王今朝
周和荣
毛雨旭
熊少聪
李梦君
关键词 镁合金可降解生物相容性合金化腐蚀性能    
Abstract:As a biodegradable material,magnesium alloys has been attracted by more researchers, recently. Due to good biocompatibility, mechanical properties and biodegradable absorption charac-teristics, it has been honored as revolutionary biological materials. However, current bio-magnesium alloy still could not meet the requirements of clinical application, due to its shortcomings of rapid corrosion rate and local corrosion. In this paper, the progress of bio-magnesium alloy in improving the corrosion performance was reviewed from the aspects of high purity, alloying, heat treatment process and surface modification. The paper makes a prospect on how to develop the biodegradable materials with better corrosion performance in terms of adding non-toxic alloying elements, proper surface coating, advanced preparation technology and heat treatment process.
Key wordsmagnesium alloy    biodegradability    biocompatibility    alloying    corrosion performance
收稿日期: 2017-03-16      出版日期: 2020-01-09
中图分类号:  R318.08  
基金资助: 
通讯作者: 宋述鹏(1979-),男,副教授,博士,研究方向:金属基生物材料的制备及性能研究,联系地址:湖北省武汉市青山区和平大道947号武汉科技大学材料与冶金学院(430081),E-mail:spsong@wust.edu.cn     E-mail: spsong@wust.edu.cn
引用本文:   
万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
WAN Tian, SONG Shu-peng, WANG Jin-zhao, ZHOU He-rong, MAO Yu-xu, XIONG Shao-cong, LI Meng-jun. Research progress in corrosion behavior of biomedical magnesium alloys. Journal of Materials Engineering, 2020, 48(1): 19-26.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000301      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/19
[1] VORMANN J. Magnesium:nutrition and metabolism[J]. Molecular Aspects of Medicine, 2003, 24(1):27-37.
[2] KANNAN M B, RAMAN R K S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid[J]. Biomaterials, 2008, 29(15):2306-2314.
[3] 袁广银,章晓波,牛佳林,等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21(10):2476-2488. YUAN G Y, ZHANG X B, NIU J L, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10):2476-2488.
[4] 袁广银,张佳,丁文江. 可降解医用镁基生物材料的研究进展[J]. 中国材料进展, 2011, 30(2):44-50. YUAN G Y, ZHANG J, DING W J. Research progress of biodegradable medical magnesium-based biomaterials[J]. Materials China, 2011, 30(2):44-50.
[5] 王昌,崔亚军,刘汉源,等. 可生物降解医用镁合金的合金化研究进展[J]. 材料导报, 2015, 29(11):55-60. WANG C, CUI Y J, LIU H Y, et al. Research progress of alloying of biodegradable medical magnesium alloys[J]. Materials Review, 2015, 29(11):55-60.
[6] 谭志刚,周倩,蒋宇钢. 生物可降解镁合金血管支架:缺点及未来研究趋势[J]. 中国组织工程研究, 2015, 19(8):1284-1288. TAN Z G, ZHOU Q, JIANG Y G. Biodegradable magnesium alloy vascular stent:shortcomings and future research trends[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2015, 19(8):1284-1288.
[7] 洪岩松,杨柯,张广道,等. 可降解镁合金的动物体内骨诱导作用[J]. 金属学报, 2008, 44(9):1035-1041. HONG Y S, YANG K, ZHANG G D, et al. Bone induction of degradable magnesium alloy in animals[J]. Acta Metallurgica Sinica, 2008, 44(9):1035-1041.
[8] 李智,周世杰,赵炯. 生物医用纯镁的腐蚀性能研究[J]. 热加工工艺, 2012, 41(16):53-56. LI Z, ZHOU S J, ZHAO J. Corrosion behavior of pure magnesium in biomedicine[J]. Hot Working Technology, 2012, 41(16):53-56.
[9] CAO F Y, SHI Z M, HOFSTETTER J, et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2[J].Corrosion Science, 2013, 75:78-99.
[10] HANAWALT J D, NELSON C E, PELOUBET J A. Corrosion studies of magnesium and its alloys[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 147:273-299.
[11] 任伊宾,黄晶晶,杨柯,等. 纯镁的生物腐蚀研究[J]. 金属学报, 2005, 41(11):1228-1232. REN Y B, HUANG J J, YANG K, et al. Study on bio-corrosion behavior of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41(11):1228-1232.
[12] JOHNSTON S, SHI Z, ATRENS A. The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution[J]. Corrosion Science, 2015, 101:182-192.
[13] ABIDIN N I Z, ROLFE B, OWEN H, et al. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91[J]. Corrosion Science, 2013, 75:354-366.
[14] QIAO Z X, SHI Z M, HORT N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting[J]. Corrosion Science, 2012, 61:185-207.
[15] PENG Q M, HUANG Y D, ZHOU L, et al. Preparation and properties of high purity Mg-Y biomaterials[J]. Biomaterials, 2010, 31(3):398-403.
[16] GU X N, ZHENG Y F, CHENG Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30(4):484-498.
[17] SONG G L, STJOHN D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J]. Journal of Light Metals, 2002, 2(1):1-16.
[18] ZONG Y, YUAN G Y, ZHANG X B, et al. Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Materials Science and Engineering:B, 2012, 177(5):395-401.
[19] ZHANG S X, ZHANG X N, ZHAO C L, et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomaterialia, 2010, 6(2):626-640.
[20] ZAKIYUDDIN A, LEE K. Effect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological media[J]. Journal of Alloys and Compounds, 2015, 629:274-283.
[21] ZENG R C, QI W C, CUI H Z, et al. In vitro corrosion of as-extruded Mg-Ca alloys-the influence of Ca concentration[J]. Corrosion Science, 2015, 96:23-31.
[22] ZANDER D, ZUMDICK N A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corrosion Science, 2015, 93:222-233.
[23] WANG L, LI J B, LI L, et al. Microstructure, mechanical and bio-corrosion properties of Mg-Zn-Zr alloys with minor Ca addition[J]. Materials Science and Technology, 2017, 33(1):9-16.
[24] BORNAPOUR M, MUJA N, SHUM-TIM D, et al. Biocompatibility and biodegradability of Mg-Sr alloys:the formation of Sr-substituted hydroxyapatite[J]. Acta Biomaterialia, 2013, 9(2):5319-5330.
[25] CHENG M X, CHEN J H, YAN H G, et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system[J]. Journal of Alloys and Compounds, 2017, 691:95-102.
[26] CHEN L X, BIN Y H, ZOU W Q, et al. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys-ZK40xSr[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66:187-200.
[27] WANG Y, LIAO Z D, SONG C J, et al. Influence of Nd on microstructure and bio-corrosion rsistance of Mg-Zn-Mn-Ca Alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4):661-666.
[28] ZHOU Y L, LI Y, LUO D M, et al. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications[J]. Materials Science and Engineering:C, 2015, 49:93-100.
[29] ZHANG X, LI Y J, WANG C S, et al. Corrosion and electrochemical behavior of Mg-Y alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5):1226-1236.
[30] HE W W, ZHANG E, YANG K. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Materials Science and Engineering:C, 2010, 30(1):167-174.
[31] CHOU D T, HONG D, SAHA P, et al. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials[J]. Acta Biomaterialia, 2013, 9(10):8518-8533.
[32] FEYERABEND F, FISCHER J, HOLTZ J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia, 2010, 6(5):1834-1842.
[33] RALSTON K D, BIRBILIS N, DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12):1201-1204.
[34] ZHAO M C, LIU M, SONG G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corrosion Science, 2008, 50(7):1939-1953.
[35] BORNAPOUR M, CELIKIN M, PEKGULERYUZ M. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure[J]. Materials Science and Engineering:C, 2015, 46:16-24.
[36] LU Y, BRADSHAW A R, CHIU Y L, et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys[J]. Materials Science and Engineering:C, 2015, 48:480-486.
[37] JI J H, PARK I S, KIM Y K, et al. Influence of heat treatment on biocorrosion and hemocompatibility of biodegradable Mg-35Zn-3Ca alloy[J]. Advances in Materials Science and Engineering, 2015,2015:318696.
[38] ZHOU W, SHEN T, AUNG N N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid[J]. Corrosion Science, 2010, 52(3):1035-1041.
[39] LU Y, BRADSHAW A R, CHIU Y L, et al. The role of precipitates in the bio-corrosion performance of Mg-3Zn in simulated body fluid[J]. Journal of Alloys and Compounds, 2014, 614:345-352.
[40] CHOI H Y, KIM W J. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51:291-301.
[41] 章晓波,薛亚军,王章忠,等. 热处理对NZ30K生物镁合金力学和腐蚀性能的影响[J]. 材料热处理学报, 2013, 34(8):20-25. ZHANG X B, XUE Y J, WANG Z Z, et al. Effect of heat treatment on mechanical and corrosion properties of NZ30K bio-magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8):20-25.
[42] WAN P, TAN L L, YANG K. Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability:a review[J]. Journal of Materials Science and Technology, 2016, 32(9):827-834.
[43] HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Biomedical coatings on magnesium alloys-a review[J]. Acta Biomaterialia, 2012, 8(7):2442-2455.
[44] ZHAO L C, CUI C X, WANG Q Z, et al. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications[J]. Corrosion Science, 2010, 52(7):2228-2234.
[45] LI L H, NARAYANAN T, KIM Y K, et al. Deposition of microarc oxidation-polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants[J]. Thin Solid Films, 2014, 562:561-567.
[46] LIU G Y, HU J, DING Z K, et al. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition[J]. Applied Surface Science, 2011, 257(6):2051-2057.
[47] CHEN X B, BIRBILIS N, ABBOTT T B. A simple route towards a hydroxyapatite-Mg (OH)2 conversion coating for magnesium[J]. Corrosion Science, 2011, 53(6):2263-2268.
[48] LEI T, OUYANG C, TANG W, et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process[J]. Corrosion Science, 2010, 52(10):3504-3508.
[49] MA X, ZHU S J, WANG L G, et al. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation[J]. Journal of Alloys and Compounds, 2014, 590:247-253.
[50] YU Y D, KUANG S Z, LI J. Influence of applied voltage and film-formation time on microstructure and corrosion resistance of coatings formed on Mg-Zn-Zr-Ca Bio-magnesium alloy[J]. The Journal of The Minerals, Metals and Materials Society, 2015, 67(9):2133-2144.
[51] LI M, CHENG Y, ZHENG Y F, et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film[J]. Applied Surface Science, 2012, 258(7):3074-3081.
[1] 甄睿, 方信贤, 皮锦红, 许恒源, 吴震. 热处理对Mg97.5Gd1.9Zn0.6合金组织与力学性能的影响[J]. 材料工程, 2020, 48(9): 132-137.
[2] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[3] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[4] 靳宇, 李家峰, 何南, 文陈, 崔庆新, 白晶莹. 纳米多孔Pd-Cu/Pd-Ag催化剂的制备及其电催化性能[J]. 材料工程, 2020, 48(5): 62-67.
[5] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[6] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[7] 刘闪光, 李国爱, 罗传彪, 李海超, 陆政, 戴圣龙. Sc元素对ZL205A合金组织和力学性能的影响[J]. 材料工程, 2020, 48(1): 84-91.
[8] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[9] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[10] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[11] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[12] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[13] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[14] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[15] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn