Research progress in corrosion behavior of biomedical magnesium alloys
WAN Tian1,2, SONG Shu-peng1,2, WANG Jin-zhao3, ZHOU He-rong2, MAO Yu-xu2, XIONG Shao-cong2, LI Meng-jun2
1. State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China;
2. College of Materials Science and Metallurgical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
3. School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
Abstract:As a biodegradable material,magnesium alloys has been attracted by more researchers, recently. Due to good biocompatibility, mechanical properties and biodegradable absorption charac-teristics, it has been honored as revolutionary biological materials. However, current bio-magnesium alloy still could not meet the requirements of clinical application, due to its shortcomings of rapid corrosion rate and local corrosion. In this paper, the progress of bio-magnesium alloy in improving the corrosion performance was reviewed from the aspects of high purity, alloying, heat treatment process and surface modification. The paper makes a prospect on how to develop the biodegradable materials with better corrosion performance in terms of adding non-toxic alloying elements, proper surface coating, advanced preparation technology and heat treatment process.
万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
WAN Tian, SONG Shu-peng, WANG Jin-zhao, ZHOU He-rong, MAO Yu-xu, XIONG Shao-cong, LI Meng-jun. Research progress in corrosion behavior of biomedical magnesium alloys. Journal of Materials Engineering, 2020, 48(1): 19-26.
[1] VORMANN J. Magnesium:nutrition and metabolism[J]. Molecular Aspects of Medicine, 2003, 24(1):27-37.
[2] KANNAN M B, RAMAN R K S. In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid[J]. Biomaterials, 2008, 29(15):2306-2314.
[3] 袁广银,章晓波,牛佳林,等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21(10):2476-2488. YUAN G Y, ZHANG X B, NIU J L, et al. Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(10):2476-2488.
[4] 袁广银,张佳,丁文江. 可降解医用镁基生物材料的研究进展[J]. 中国材料进展, 2011, 30(2):44-50. YUAN G Y, ZHANG J, DING W J. Research progress of biodegradable medical magnesium-based biomaterials[J]. Materials China, 2011, 30(2):44-50.
[5] 王昌,崔亚军,刘汉源,等. 可生物降解医用镁合金的合金化研究进展[J]. 材料导报, 2015, 29(11):55-60. WANG C, CUI Y J, LIU H Y, et al. Research progress of alloying of biodegradable medical magnesium alloys[J]. Materials Review, 2015, 29(11):55-60.
[6] 谭志刚,周倩,蒋宇钢. 生物可降解镁合金血管支架:缺点及未来研究趋势[J]. 中国组织工程研究, 2015, 19(8):1284-1288. TAN Z G, ZHOU Q, JIANG Y G. Biodegradable magnesium alloy vascular stent:shortcomings and future research trends[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2015, 19(8):1284-1288.
[7] 洪岩松,杨柯,张广道,等. 可降解镁合金的动物体内骨诱导作用[J]. 金属学报, 2008, 44(9):1035-1041. HONG Y S, YANG K, ZHANG G D, et al. Bone induction of degradable magnesium alloy in animals[J]. Acta Metallurgica Sinica, 2008, 44(9):1035-1041.
[8] 李智,周世杰,赵炯. 生物医用纯镁的腐蚀性能研究[J]. 热加工工艺, 2012, 41(16):53-56. LI Z, ZHOU S J, ZHAO J. Corrosion behavior of pure magnesium in biomedicine[J]. Hot Working Technology, 2012, 41(16):53-56.
[9] CAO F Y, SHI Z M, HOFSTETTER J, et al. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2[J].Corrosion Science, 2013, 75:78-99.
[10] HANAWALT J D, NELSON C E, PELOUBET J A. Corrosion studies of magnesium and its alloys[J]. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers, 1942, 147:273-299.
[11] 任伊宾,黄晶晶,杨柯,等. 纯镁的生物腐蚀研究[J]. 金属学报, 2005, 41(11):1228-1232. REN Y B, HUANG J J, YANG K, et al. Study on bio-corrosion behavior of pure magnesium[J]. Acta Metallurgica Sinica, 2005, 41(11):1228-1232.
[12] JOHNSTON S, SHI Z, ATRENS A. The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks' solution[J]. Corrosion Science, 2015, 101:182-192.
[13] ABIDIN N I Z, ROLFE B, OWEN H, et al. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91[J]. Corrosion Science, 2013, 75:354-366.
[14] QIAO Z X, SHI Z M, HORT N, et al. Corrosion behaviour of a nominally high purity Mg ingot produced by permanent mould direct chill casting[J]. Corrosion Science, 2012, 61:185-207.
[15] PENG Q M, HUANG Y D, ZHOU L, et al. Preparation and properties of high purity Mg-Y biomaterials[J]. Biomaterials, 2010, 31(3):398-403.
[16] GU X N, ZHENG Y F, CHENG Y, et al. In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30(4):484-498.
[17] SONG G L, STJOHN D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J]. Journal of Light Metals, 2002, 2(1):1-16.
[18] ZONG Y, YUAN G Y, ZHANG X B, et al. Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Materials Science and Engineering:B, 2012, 177(5):395-401.
[19] ZHANG S X, ZHANG X N, ZHAO C L, et al. Research on an Mg-Zn alloy as a degradable biomaterial[J]. Acta Biomaterialia, 2010, 6(2):626-640.
[20] ZAKIYUDDIN A, LEE K. Effect of a small addition of zinc and manganese to Mg-Ca based alloys on degradation behavior in physiological media[J]. Journal of Alloys and Compounds, 2015, 629:274-283.
[21] ZENG R C, QI W C, CUI H Z, et al. In vitro corrosion of as-extruded Mg-Ca alloys-the influence of Ca concentration[J]. Corrosion Science, 2015, 96:23-31.
[22] ZANDER D, ZUMDICK N A. Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corrosion Science, 2015, 93:222-233.
[23] WANG L, LI J B, LI L, et al. Microstructure, mechanical and bio-corrosion properties of Mg-Zn-Zr alloys with minor Ca addition[J]. Materials Science and Technology, 2017, 33(1):9-16.
[24] BORNAPOUR M, MUJA N, SHUM-TIM D, et al. Biocompatibility and biodegradability of Mg-Sr alloys:the formation of Sr-substituted hydroxyapatite[J]. Acta Biomaterialia, 2013, 9(2):5319-5330.
[25] CHENG M X, CHEN J H, YAN H G, et al. Effects of minor Sr addition on microstructure, mechanical and bio-corrosion properties of the Mg-5Zn based alloy system[J]. Journal of Alloys and Compounds, 2017, 691:95-102.
[26] CHEN L X, BIN Y H, ZOU W Q, et al. The influence of Sr on the microstructure, degradation and stress corrosion cracking of the Mg alloys-ZK40xSr[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 66:187-200.
[27] WANG Y, LIAO Z D, SONG C J, et al. Influence of Nd on microstructure and bio-corrosion rsistance of Mg-Zn-Mn-Ca Alloy[J]. Rare Metal Materials and Engineering, 2013, 42(4):661-666.
[28] ZHOU Y L, LI Y, LUO D M, et al. Microstructures, mechanical and corrosion properties and biocompatibility of as extruded Mg-Mn-Zn-Nd alloys for biomedical applications[J]. Materials Science and Engineering:C, 2015, 49:93-100.
[29] ZHANG X, LI Y J, WANG C S, et al. Corrosion and electrochemical behavior of Mg-Y alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5):1226-1236.
[30] HE W W, ZHANG E, YANG K. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank's solution[J]. Materials Science and Engineering:C, 2010, 30(1):167-174.
[31] CHOU D T, HONG D, SAHA P, et al. In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials[J]. Acta Biomaterialia, 2013, 9(10):8518-8533.
[32] FEYERABEND F, FISCHER J, HOLTZ J, et al. Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomaterialia, 2010, 6(5):1834-1842.
[33] RALSTON K D, BIRBILIS N, DAVIES C H J. Revealing the relationship between grain size and corrosion rate of metals[J]. Scripta Materialia, 2010, 63(12):1201-1204.
[34] ZHAO M C, LIU M, SONG G L, et al. Influence of the β-phase morphology on the corrosion of the Mg alloy AZ91[J]. Corrosion Science, 2008, 50(7):1939-1953.
[35] BORNAPOUR M, CELIKIN M, PEKGULERYUZ M. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure[J]. Materials Science and Engineering:C, 2015, 46:16-24.
[36] LU Y, BRADSHAW A R, CHIU Y L, et al. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys[J]. Materials Science and Engineering:C, 2015, 48:480-486.
[37] JI J H, PARK I S, KIM Y K, et al. Influence of heat treatment on biocorrosion and hemocompatibility of biodegradable Mg-35Zn-3Ca alloy[J]. Advances in Materials Science and Engineering, 2015,2015:318696.
[38] ZHOU W, SHEN T, AUNG N N. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid[J]. Corrosion Science, 2010, 52(3):1035-1041.
[39] LU Y, BRADSHAW A R, CHIU Y L, et al. The role of precipitates in the bio-corrosion performance of Mg-3Zn in simulated body fluid[J]. Journal of Alloys and Compounds, 2014, 614:345-352.
[40] CHOI H Y, KIM W J. Effect of thermal treatment on the bio-corrosion and mechanical properties of ultrafine-grained ZK60 magnesium alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51:291-301.
[41] 章晓波,薛亚军,王章忠,等. 热处理对NZ30K生物镁合金力学和腐蚀性能的影响[J]. 材料热处理学报, 2013, 34(8):20-25. ZHANG X B, XUE Y J, WANG Z Z, et al. Effect of heat treatment on mechanical and corrosion properties of NZ30K bio-magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8):20-25.
[42] WAN P, TAN L L, YANG K. Surface modification on biodegradable magnesium alloys as orthopedic implant materials to improve the bio-adaptability:a review[J]. Journal of Materials Science and Technology, 2016, 32(9):827-834.
[43] HORNBERGER H, VIRTANEN S, BOCCACCINI A R. Biomedical coatings on magnesium alloys-a review[J]. Acta Biomaterialia, 2012, 8(7):2442-2455.
[44] ZHAO L C, CUI C X, WANG Q Z, et al. Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications[J]. Corrosion Science, 2010, 52(7):2228-2234.
[45] LI L H, NARAYANAN T, KIM Y K, et al. Deposition of microarc oxidation-polycaprolactone duplex coating to improve the corrosion resistance of magnesium for biodegradable implants[J]. Thin Solid Films, 2014, 562:561-567.
[46] LIU G Y, HU J, DING Z K, et al. Bioactive calcium phosphate coating formed on micro-arc oxidized magnesium by chemical deposition[J]. Applied Surface Science, 2011, 257(6):2051-2057.
[47] CHEN X B, BIRBILIS N, ABBOTT T B. A simple route towards a hydroxyapatite-Mg (OH)2 conversion coating for magnesium[J]. Corrosion Science, 2011, 53(6):2263-2268.
[48] LEI T, OUYANG C, TANG W, et al. Enhanced corrosion protection of MgO coatings on magnesium alloy deposited by an anodic electrodeposition process[J]. Corrosion Science, 2010, 52(10):3504-3508.
[49] MA X, ZHU S J, WANG L G, et al. Synthesis and properties of a bio-composite coating formed on magnesium alloy by one-step method of micro-arc oxidation[J]. Journal of Alloys and Compounds, 2014, 590:247-253.
[50] YU Y D, KUANG S Z, LI J. Influence of applied voltage and film-formation time on microstructure and corrosion resistance of coatings formed on Mg-Zn-Zr-Ca Bio-magnesium alloy[J]. The Journal of The Minerals, Metals and Materials Society, 2015, 67(9):2133-2144.
[51] LI M, CHENG Y, ZHENG Y F, et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film[J]. Applied Surface Science, 2012, 258(7):3074-3081.