Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 144-150    DOI: 10.11868/j.issn.1001-4381.2017.000381
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响
柯鹏1, 蔡飞1, 胡凯1, 张世宏1, 王硕煜2, 朱广宏2, 倪振航2, 胡小红2
1. 安徽工业大学 现代表界面工程研究中心, 安徽 马鞍山 243002;
2. 安徽马钢表面工程技术有限公司, 安徽 马鞍山 243000
Effect of bond layers and vacuum annealing on sprayed NiCr-30%Cr3C2 metallic-ceramic coating properties
KE Peng1, CAI Fei1, HU Kai1, ZHANG Shi-hong1, WANG Shuo-yu2, ZHU Guang-hong2, NI Zhen-hang2, HU Xiao-hong2
1. Research Center of Modern Surface & Interface Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China;
2. Anhui Ma Steel Surface Engineering Technology Co., Ltd., Maanshan 243000, Anhui, China
全文: PDF(11091 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用两种黏结层(电镀Ni+HVOF NiCr黏结层和电镀Ni黏结层),通过超音速火焰喷涂技术制备NiCr-30% Cr3C2(质量分数)金属-陶瓷涂层,并对含电镀Ni黏结层的涂层在不同温度(800,850,900℃)下进行真空退火处理。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电子拉伸试验机、销盘摩擦磨损仪(BOD)以及台阶仪研究了黏结层和退火处理对涂层的物相结构、结合强度和不同载荷下摩擦性能的影响。结果表明:采用Ni黏结层涂层的结合强度达64MPa,且退火后结合强度明显提升;20N载荷下,该涂层的耐磨性优于Ni-NiCr黏结层涂层,且退火后耐磨性明显提升;在5N载荷下,两种黏结层涂层的耐磨性相近,但退火后Ni黏结层涂层的耐磨性降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柯鹏
蔡飞
胡凯
张世宏
王硕煜
朱广宏
倪振航
胡小红
关键词 超音速火焰喷涂黏结层退火处理耐磨性结合强度    
Abstract:NiCr-30%Cr3C2(mass fraction) ceramic-metallic coatings were sprayed with two types of bond layer (electro-deposited Ni+HVOF NiCr bond layer and electro-deposited Ni bond layer) by HVOF. The coating with Ni bond layer was vacuum annealed at different temperatures (800, 850℃ and 900℃). Phase, microstructure and mechanical properties under different loads of coatings were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), electron-tensile tester, ball-on-disk (BOD) and step profiler. The results show that the adhesion strength of the coat-ing with Ni bond layer reaches 64MPa and is improved obviously after annealing. The wear resistance of the coating with Ni bond layer is superior to that with Ni-NiCr bond layer and improved signific-antly under 20N loading, while the wear resistance of the two coatings is with no much difference and the wear resistance of the coating with Ni bond layer is decreased after annealing under 5N loading.
Key wordsHVOF spraying    bond layer    annealing treatment    wear resistance    adhesion strength
收稿日期: 2017-03-31      出版日期: 2019-07-19
中图分类号:  TG174  
通讯作者: 张世宏(1981-),男,教授,博士,主要研究方向为表面工程,联系地址:安徽省马鞍山市花山区安徽工业大学现代表界面工程研究中心(243002),tougaoyouxiang206@163.com     E-mail: tougaoyouxiang206@163.com
引用本文:   
柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
KE Peng, CAI Fei, HU Kai, ZHANG Shi-hong, WANG Shuo-yu, ZHU Guang-hong, NI Zhen-hang, HU Xiao-hong. Effect of bond layers and vacuum annealing on sprayed NiCr-30%Cr3C2 metallic-ceramic coating properties. Journal of Materials Engineering, 2019, 47(7): 144-150.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000381      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/144
[1] 王博,杨卯生,赵昆渝. 双真空冶炼高合金轴承钢后真空表面渗碳疲劳性能的研究[J]. 真空科学与技术学报,2016, 36(7):838-843. WANG B,YANG M S,ZHAO K Y. Fatigue resistance of surface-carburized Cr-Co-Mo-Ni bearing steel refined by vacuum melting[J]. Chinese Journal of Vacuum Science and Technology,2016, 36(7):838-843.
[2] 韩顺,厉勇,王春旭,等. AF1410钢的旋转弯曲疲劳破坏行为[J].钢铁,2013, 48(3):82-85. HAN S,LI Y,WANG C X, et al. Behavior of rotating-bending fatigue failure of AF1410 steel[J]. Iron and Steel, 2013, 48(3):82-85.
[3] 廉海强,杨卯生,孙世清. 新型Cr-Ni-Mo渗碳轴承钢旋转弯曲疲劳性能研究[J]. 真空科学与技术学报,2016, 36(7):779-783. LIAN H Q,YANG M S,SUN S Q. Rotating bending fatigue properties of carburized Ni-Cr-Mo bearing steel[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(7):779-783.
[4] SAKAI T, NAKAGAWA A,OGUMA N, et al. A review on fatigue fracture modes of structural metallic materials in very high cycle regime[J]. International Journal of Fatigue, 2016, 93:339-351.
[5] 鲁连涛,李伟,张继旺,等. GCr15钢旋转弯曲超长寿命疲劳性能分析[J].金属学报,2009, 45(1):73-78. LU L T, LI W, ZHANG J W,et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15[J]. Acta Metallurgica Sinica,2009, 45(1):73-78.
[6] MURAKAMI Y,YOKOYAMA N N,NAGATA J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue & Fracture of Engineering Materials & Structures,2002,25:735-746.
[7] 周承恩,洪友士. GCr15钢超高周疲劳行为的实验研究[J].机械强度,2004,26(增刊1):157-160. ZHOU C E,HONG Y S. Experimental investigation on very-high-cycle fatigue of GCr15 steel[J]. Journal of Mechanical Strength,2004, 26(Suppl 1):157-160.
[8] GILBERT J L,PIEHLER H R. On the nature and crystallog-raphic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 1993, 24(3):669-680.
[9] SHIOZAWA K,MORⅡ Y,NISHINO S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J]. International Journal of Fatigue, 2006, 28(11):1521-1532.
[10] MEURLING F, MELANDER A, TIDESTEN M, et al. Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels[J]. International Journal of Fatigue, 2001, 23(3):215-224.
[11] FUKAURA K,YOKOYAMA Y,YOKOI D, et al. Fatigue of cold-work tool steels:effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations[J]. Metallurgical and Materials Transactions A, 2004, 35(4):1289-1300.
[12] PICAS I,CUADRADO N,CASELLAS D, et al. Microstructural effects on the fatigue crack nucleation in cold work tool steels[J]. Procedia Engineering, 2010, 2(1):1777-1785.
[13] GÜNTHER J,KREWERTH D,LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 94:236-245.
[14] SOHAR C R,BETZWAR-KOTAS A,GIERL C, et al. Gigac-ycle fatigue behavior of a high chromium alloyed cold work tool steel[J]. International Journal of Fatigue, 2008, 30(7):1137-1149
[15] MUGHRABI H. On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25:755-764.
[16] IQBAL A,KING J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels[J]. International Journal of Fatigue, 1990, 12(4):234-244.
[17] RESCALVO J A,AVERBACH BL. Fracture and fatigue in M-50 and 18-4-1 high speed steels[J]. Metallurgical and Materials Transactions A, 1979, 10(9):1265-1271.
[18] MURAKAMI Y. Metal fatigue, effect of defects and nonme-tallic inclusions[M]. Oxford:Elsevier,2002:35-55.
[1] 刘雪峰, 白于良, 李晶琨, 秦回一, 陈鑫. 冷轧成形钛/钢层状复合板界面结合强度的影响因素[J]. 材料工程, 2020, 48(7): 119-126.
[2] 毛杰, 马景涛, 邓畅光, 邓春明, 宋进兵, 刘敏, 宋鹏. 表面粗糙度对PS-PVD YSZ陶瓷层性能的影响[J]. 材料工程, 2020, 48(5): 144-150.
[3] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[4] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[5] 王瑶, 赵雪妮, 党新安, 杨璞, 魏森森, 张伟刚, 刘庆瑶. 钢表面梯度结构耐腐蚀铝涂层的制备及研究[J]. 材料工程, 2019, 47(11): 148-154.
[6] 杨勇维, 符寒光, 鞠江, 王开明, 雷永平, 朱礼龙, 江亮. 铬对高钒耐磨合金凝固组织和耐磨性能的影响[J]. 材料工程, 2018, 46(9): 122-130.
[7] 崔永静, 郝晶莹, 王长亮, 宇波, 汤智慧. 树脂基复合材料表面爆炸喷涂铝涂层性能研究[J]. 材料工程, 2018, 46(6): 120-124.
[8] 杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
[9] 王朴, 杜继涛. 电流密度对水热电化学沉积HA涂层性能的影响[J]. 材料工程, 2018, 46(4): 58-65.
[10] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[11] 杜际雨, 李方义, 鹿海洋, 商建通, 李振. 大气等离子喷涂NiCrBSi-Mo/Ni涂层中黏结层对NiCrBSi-Mo复合工作层性能的影响[J]. 材料工程, 2017, 45(9): 86-92.
[12] 马世榜, 夏振伟, 徐杨, 施焕儒, 王旭, 郑越. 激光熔覆原位自生TiC颗粒增强镍基复合涂层的组织与耐磨性[J]. 材料工程, 2017, 45(6): 24-30.
[13] 田兵, 龚建勋, 刘江晴, 吴慧剑. Si对明弧堆焊合金M7C3相及耐磨性的影响[J]. 材料工程, 2017, 45(4): 34-40.
[14] 赵龙志, 刘武, 刘德佳, 赵明娟, 张坚. SiC含量对激光熔覆SiC/Ni60A复合涂层显微组织和耐磨性能的影响[J]. 材料工程, 2017, 45(3): 88-94.
[15] 王红星, 毛向阳, 沈彤, 张月. 纳米TiC颗粒对Ni-TiC复合镀层组织与性能的影响[J]. 材料工程, 2017, 45(1): 52-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn