Effect of bond layers and vacuum annealing on sprayed NiCr-30%Cr3C2 metallic-ceramic coating properties
KE Peng1, CAI Fei1, HU Kai1, ZHANG Shi-hong1, WANG Shuo-yu2, ZHU Guang-hong2, NI Zhen-hang2, HU Xiao-hong2
1. Research Center of Modern Surface & Interface Engineering, Anhui University of Technology, Maanshan 243002, Anhui, China;
2. Anhui Ma Steel Surface Engineering Technology Co., Ltd., Maanshan 243000, Anhui, China
Abstract:NiCr-30%Cr3C2(mass fraction) ceramic-metallic coatings were sprayed with two types of bond layer (electro-deposited Ni+HVOF NiCr bond layer and electro-deposited Ni bond layer) by HVOF. The coating with Ni bond layer was vacuum annealed at different temperatures (800, 850℃ and 900℃). Phase, microstructure and mechanical properties under different loads of coatings were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), electron-tensile tester, ball-on-disk (BOD) and step profiler. The results show that the adhesion strength of the coat-ing with Ni bond layer reaches 64MPa and is improved obviously after annealing. The wear resistance of the coating with Ni bond layer is superior to that with Ni-NiCr bond layer and improved signific-antly under 20N loading, while the wear resistance of the two coatings is with no much difference and the wear resistance of the coating with Ni bond layer is decreased after annealing under 5N loading.
柯鹏, 蔡飞, 胡凯, 张世宏, 王硕煜, 朱广宏, 倪振航, 胡小红. 黏结层及真空退火对NiCr-30% Cr3C2金属-陶瓷喷涂层性能的影响[J]. 材料工程, 2019, 47(7): 144-150.
KE Peng, CAI Fei, HU Kai, ZHANG Shi-hong, WANG Shuo-yu, ZHU Guang-hong, NI Zhen-hang, HU Xiao-hong. Effect of bond layers and vacuum annealing on sprayed NiCr-30%Cr3C2 metallic-ceramic coating properties. Journal of Materials Engineering, 2019, 47(7): 144-150.
[1] 王博,杨卯生,赵昆渝. 双真空冶炼高合金轴承钢后真空表面渗碳疲劳性能的研究[J]. 真空科学与技术学报,2016, 36(7):838-843. WANG B,YANG M S,ZHAO K Y. Fatigue resistance of surface-carburized Cr-Co-Mo-Ni bearing steel refined by vacuum melting[J]. Chinese Journal of Vacuum Science and Technology,2016, 36(7):838-843.
[2] 韩顺,厉勇,王春旭,等. AF1410钢的旋转弯曲疲劳破坏行为[J].钢铁,2013, 48(3):82-85. HAN S,LI Y,WANG C X, et al. Behavior of rotating-bending fatigue failure of AF1410 steel[J]. Iron and Steel, 2013, 48(3):82-85.
[3] 廉海强,杨卯生,孙世清. 新型Cr-Ni-Mo渗碳轴承钢旋转弯曲疲劳性能研究[J]. 真空科学与技术学报,2016, 36(7):779-783. LIAN H Q,YANG M S,SUN S Q. Rotating bending fatigue properties of carburized Ni-Cr-Mo bearing steel[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(7):779-783.
[4] SAKAI T, NAKAGAWA A,OGUMA N, et al. A review on fatigue fracture modes of structural metallic materials in very high cycle regime[J]. International Journal of Fatigue, 2016, 93:339-351.
[5] 鲁连涛,李伟,张继旺,等. GCr15钢旋转弯曲超长寿命疲劳性能分析[J].金属学报,2009, 45(1):73-78. LU L T, LI W, ZHANG J W,et al. Analysis of rotary bending gigacycle fatigue properties of bearing steel GCr15[J]. Acta Metallurgica Sinica,2009, 45(1):73-78.
[6] MURAKAMI Y,YOKOYAMA N N,NAGATA J. Mechanism of fatigue failure in ultralong life regime[J]. Fatigue & Fracture of Engineering Materials & Structures,2002,25:735-746.
[7] 周承恩,洪友士. GCr15钢超高周疲劳行为的实验研究[J].机械强度,2004,26(增刊1):157-160. ZHOU C E,HONG Y S. Experimental investigation on very-high-cycle fatigue of GCr15 steel[J]. Journal of Mechanical Strength,2004, 26(Suppl 1):157-160.
[8] GILBERT J L,PIEHLER H R. On the nature and crystallog-raphic orientation of subsurface cracks in high cycle fatigue of Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 1993, 24(3):669-680.
[9] SHIOZAWA K,MORⅡ Y,NISHINO S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime[J]. International Journal of Fatigue, 2006, 28(11):1521-1532.
[10] MEURLING F, MELANDER A, TIDESTEN M, et al. Influence of carbide and inclusion contents on the fatigue properties of high speed steels and tool steels[J]. International Journal of Fatigue, 2001, 23(3):215-224.
[11] FUKAURA K,YOKOYAMA Y,YOKOI D, et al. Fatigue of cold-work tool steels:effect of heat treatment and carbide morphology on fatigue crack formation, life, and fracture surface observations[J]. Metallurgical and Materials Transactions A, 2004, 35(4):1289-1300.
[12] PICAS I,CUADRADO N,CASELLAS D, et al. Microstructural effects on the fatigue crack nucleation in cold work tool steels[J]. Procedia Engineering, 2010, 2(1):1777-1785.
[13] GÜNTHER J,KREWERTH D,LIPPMANN T, et al. Fatigue life of additively manufactured Ti-6Al-4V in the very high cycle fatigue regime[J]. International Journal of Fatigue, 2016, 94:236-245.
[14] SOHAR C R,BETZWAR-KOTAS A,GIERL C, et al. Gigac-ycle fatigue behavior of a high chromium alloyed cold work tool steel[J]. International Journal of Fatigue, 2008, 30(7):1137-1149
[15] MUGHRABI H. On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue & Fracture of Engineering Materials & Structures, 2002, 25:755-764.
[16] IQBAL A,KING J E. The role of primary carbides in fatigue crack propagation in aeroengine bearing steels[J]. International Journal of Fatigue, 1990, 12(4):234-244.
[17] RESCALVO J A,AVERBACH BL. Fracture and fatigue in M-50 and 18-4-1 high speed steels[J]. Metallurgical and Materials Transactions A, 1979, 10(9):1265-1271.
[18] MURAKAMI Y. Metal fatigue, effect of defects and nonme-tallic inclusions[M]. Oxford:Elsevier,2002:35-55.