Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 95-100    DOI: 10.11868/j.issn.1001-4381.2017.000412
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变
卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋
南昌大学 机电工程学院 江西省机器人与焊接自动化 重点实验室, 南昌 330031
Microstructure Evolution of Sn-35Bi-1Ag/Ni-P/Cu Solder Joints During Post-reflow Cooling and Isothermal Aging
LU Han-qiao, LI Yu-long, YU Xiao, LONG Wei-feng, JIANG Jian-feng
Key Laboratory for Robot & Welding Automation of Jiangxi Province, Mechanical & Electrical Engineering School, Nanchang University, Nanchang 330031, China
全文: PDF(3914 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过回流焊接方法,采用水、炉两种冷却方式分别制备了Sn-35Bi-1Ag/Ni-P/Cu快、慢冷钎焊接头。利用等温时效法对两种焊点界面IMCs层的生长动力学进行研究。采用SEM和EDS对界面层的微观结构和物相组成进行表征。结果表明:快冷条件的钎焊界面为(Ni,Cu)3Sn4+Ni3P的复合结构;慢冷条件下界面结构为(Ni,Cu)3Sn4+Ni3P+(Cu,Ni)6Sn5。等温时效过程中Ni-P层逐渐消耗,(Ni,Cu)3Sn4生长变慢,(Cu,Ni)6Sn5生长遵循时间的平方根动力学,界面IMCs的生长表现为扩散机制控制。两种焊点界面层最终均演化为(Cu,Ni)6Sn5+(Ni,Cu)3Sn4+(Cu,Ni)6Sn5的复合结构。钎焊时效中慢冷焊点IMCs层厚度均大于同等条件的快冷IMCs层,慢冷时界面层IMCs生长速率为4.670×10-18m2/s,快冷时为3.816×10-18m2/s,表明钎焊冷却速率影响钎焊及服役过程中焊点的老化行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢汉桥
李玉龙
余啸
龙维峰
江建锋
关键词 无铅钎料冷却速率等温时效金属间化合物    
Abstract:Two kinds of rapid and slow cooling solder joints of Sn-35Bi-1Ag/Ni-P/Cu were prepared by reflow soldering and then cooling in water and oven, respectively. The kinetics of two kinds of layers were investigated using isothermal aging. Scanning electron microscope and energy dispersive spectrum were employed to characterize the microstructure and composition of the interfacial layers. Experimental results show that the structure of rapid-cooling interface is composed of (Ni,Cu)3Sn4+Ni3P, while the slow-cooling interface consisting of (Ni,Cu)3Sn4+Ni3P+(Cu,Ni)6Sn5.During the isothermal aging process, the growth of (Ni,Cu)3Sn4 layer slows down for the thin Ni-P gradually depleting, but the (Cu,Ni)6Sn5 layer follows the dynamics of the square root of aging time. The growth of interface IMCs is overall controlled by the diffusion mechanism, and these two kinds of interfacial layers eventually exhibit the composite lamellar structure of (Cu,Ni)6Sn5+(Ni,Cu)3Sn4+(Cu,Ni)6Sn5.The IMCs layer thickness in slow-cooling solder joints is greater than that in rapid-cooling solder joints under the same condition during soldering and aging. The growth rates of total IMCs are 4.670×10-18m2/s for slow-cooling joints, 3.816×10-18m2/s for rapid-cooling joints, respectively. It indicates that the cooling rate affects the aging behavior of solder joints during soldering and service.
Key wordslead-free solder    cooling rate    isothermal aging    intermetallic compounds
收稿日期: 2017-04-09      出版日期: 2018-06-14
中图分类号:  TG454  
通讯作者: 李玉龙(1978-),男,教授,工学博士,主要从事钎焊、特种连接、光纤传感等方向的科研和教学工作,联系地址:江西省南昌市红谷滩新区学府大道999号南昌大学机电工程学院(330031),E-mail:liyulong@ncu.edu.cn     E-mail: liyulong@ncu.edu.cn
引用本文:   
卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋. 回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变[J]. 材料工程, 2018, 46(6): 95-100.
LU Han-qiao, LI Yu-long, YU Xiao, LONG Wei-feng, JIANG Jian-feng. Microstructure Evolution of Sn-35Bi-1Ag/Ni-P/Cu Solder Joints During Post-reflow Cooling and Isothermal Aging. Journal of Materials Engineering, 2018, 46(6): 95-100.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000412      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/95
[1] HU X, LI Y, MIN Z. Interfacial reaction and growth behavior of IMCs layer between Sn-58Bi solders and a Cu substrate[J]. Journal of Materials Science:Materials in Electronics, 2013, 24(6):2027-2034.
[2] 何鹏,吕晓春,张斌斌,等. 合金元素对Sn-57Bi无铅钎料组织及韧性的影响[J]. 材料工程,2010(10):13-17. HE P, LV X C, ZHANG B B, et al.Effect of alloy element on microstructure and impact toughness of Sn-57Bi lead-free solders[J]. Journal of Materials Engineering, 2010(10):13-17.
[3] 王小京, 刘彬, 周慧玲, 等. P对Sn-Bi合金组织与性能的影响[J]. 材料工程, 2016, 44(7):113-118. WANG X J, LIU B, ZHOU H L, et al.Effect of P on microstructure and mechanical properties of Sn-Bi solder[J]. Journal of Materials Engineering, 2016, 44(7):113-118.
[4] PENG C, SHEN J, XIE W, et al. Influence of minor Ag nano-particles additions on the microstructure of Sn30Bi0.5Cu solder reacted with a Cu substrate[J]. Journal of Materials Science:Materials in Electronics, 2011, 22(7):797-806.
[5] ZHANG L, SUN L, GUO Y. Microstructures and properties of Sn58Bi, Sn35Bi0.3Ag, Sn35Bi1.0Ag solder and solder joints[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(10):7629-7634.
[6] YOON J W, KIM S W, JUNG S B. Effect of reflow time on interfacial reaction and shear strength of Sn-0.7Cu solder/Cu and electroless Ni-P BGA joints[J]. Journal of Alloys and Compounds, 2004, 385(1):192-198.
[7] 徐波. 无铅回流焊冷却速率对焊点质量的影响[D]. 哈尔滨:哈尔滨工业大学, 2006. XU B. Effect of cooling rate on quality of solder joints in lead-free reflow soldering[D].Harbin:Harbin Institute of Technology, 2006.
[8] MA H T, WANG J, QU L, et al. A study on the physical properties and interfacial reactions with Cu substrate of rapidly solidified Sn-3.5Ag lead-free solder[J]. Journal of Electronic Materials, 2013, 42(8):2686-2695.
[9] YANG L, ZHANG Z F. Growth behavior of intermetallic compounds in Cu/Sn3.0Ag0.5Cu solder joints with different rates of cooling[J].Journal of Electronic Materials,2015,44(1):590-596.
[10] KUMAR A, CHEN Z, MHAISALKAR S G, et al. Effect of Ni-P thickness on solid-state interfacial reactions between Sn-3.5Ag solder and electroless Ni-P metallization on Cu substrate[J]. Thin Solid Films, 2006, 504(1):410-415.
[11] KUMAR S, JUNG J P. Mechanical and electronic properties of Ag3Sn intermetallic compound in lead free solders using ab initio atomistic calculation[J]. Materials Science and Engineering:B, 2013, 178(1):10-21.
[12] GUO B, KUNWAR A, MA H, et al. Effects of soldering temperature and cooling rate on the as-soldered microstructures of intermetallic compounds in Sn-0.7Cu/Cu joint[C]//International Conference on Electronic Packaging Technology, 201516th International Conference,IEEE,Changsha,China,2015:249-252.
[13] YU C, YANG Y, CHEN J, et al. Effect of deposit thickness during electroplating on Kirkendall voiding at Sn/Cu joints[J]. Materials Letters, 2014, 128:9-11.
[14] TSENG C F, LEE C J, DUH J G. Roles of Cu in Pb-free solders jointed with electroless Ni(P) plating[J]. Materials Science and Engineering:A, 2013, 574(7):60-67.
[15] JANG J W, KIM P G, TU K N, et al. Solder reaction-assisted crystallization of electroless Ni-P under bump metallization in low cost flip chip technology[J]. Journal of Applied Physics, 1999, 85(12):8456-8463.
[16] 黄明亮, 柏冬梅. 钎焊及时效过程中化学镀Ni-P与Sn-3.5Ag的界面反应[J]. 中国有色金属学报, 2010, 20(6):1189-1194. HUANG M L, BAI D M. Interfacial reactions between Sn-3.5Ag solder and electroless Ni-P during soldering and aging[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(6):1189-1194.
[17] SHEN J, ZHAO M, HE P, et al. Growth behaviors of intermetallic compounds at Sn-3.0Ag-0.5Cu/Cu interface during isothermal and non-isothermal aging[J]. Journal of Alloys and Compounds, 2013, 574(10):451-458.
[18] QI Y, ZBRZEZNY A R, AGIA M, et al. Accelerated thermal fatigue of lead-free solder joints as a function of reflow cooling rate[J]. Journal of Electronic Materials,2004,33(12):1497-1506.
[1] 宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
[2] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[3] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[4] 董伟, 李文畅, 许富民, 韩阳, 张伟. 单分散铁基Fe60Ni7.5Mo7.5P10C10B5金属玻璃球形粒子的制备及评价[J]. 材料工程, 2018, 46(10): 30-36.
[5] 吕滨江, 彭建, 梁鹏, 王进. 冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响[J]. 材料工程, 2016, 44(9): 82-88.
[6] 黄健康, 邵玲, 石玗, 顾玉芬. 铝合金与镀锌钢脉冲旁路耦合电弧GMAW熔钎焊搭接工艺及接头性能的研究[J]. 材料工程, 2014, 0(3): 21-26,33.
[7] 张亮, 韩继光, 何成文, 郭永环, 张剑. 热循环对SnAgCu(纳米Al)/Cu焊点界面与性能影响[J]. 材料工程, 2014, 0(3): 55-59.
[8] 彭宁琦, 唐广波, 刘正东. 奥氏体高温转变区二段冷却速率对铁素体相变的影响[J]. 材料工程, 2013, 0(9): 11-15.
[9] 陈建勋, 赵兴科, 刘大勇, 黄继华, 邹旭晨. 电子组装用SnAgCu系无铅钎料的研究进展[J]. 材料工程, 2013, 0(9): 91-98.
[10] 张果, 杜军, 李文芳, 豆琦, 蔡添祥. Ca和La对Mg-5Sn-2Si合金组织和蠕变性能的影响[J]. 材料工程, 2013, 0(4): 81-84.
[11] 王红星, 杨少锋, 柳秉毅, 张炎. 料浆包渗温度对渗Si层组织结构和性能的影响[J]. 材料工程, 2013, (2): 69-73.
[12] 熊华平, 毛建英, 陈冰清, 王群, 吴世彪, 李晓红. 航空航天轻质高温结构材料的焊接技术研究进展[J]. 材料工程, 2013, 0(10): 1-12.
[13] 彭建, 佘欢, 陶健全, 王小红, 潘复生. 冷却过程对AZ61镁合金凝固组织的影响[J]. 材料工程, 2012, 0(2): 58-61.
[14] 冯中学, 潘复生, 张喜燕, 汤爱涛, 付启涛. Mg17Al12相在AZ61镁合金半连续铸锭中的分布特性[J]. 材料工程, 2012, 0(1): 13-17.
[15] 陈海燕, 揭晓华, 张海燕, 郭黎. 添加0.05%(La+Ce)对SnXCuNi焊料与Cu基板间界面组织的影响[J]. 材料工程, 2011, 0(9): 29-32,38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn