Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (5): 29-35    DOI: 10.11868/j.issn.1001-4381.2017.000429
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯表面稀土改性机理
王莹, 李勇, 朱靖, 赵亚茹, 李焕
江西理工大学 工程研究院, 江西 赣州 341000
Surface Modification Mechanism of Graphene Oxide by Adding Rare Earths
WANG Ying, LI Yong, ZHU Jing, ZHAO Ya-ru, LI Huan
Institute of Engineering Research, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
全文: PDF(5031 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯独特的物理、化学和力学性能为复合材料的开发奠定了重要基础,是各种复合材料的理想增强体,但石墨烯分散性和湿润性差的问题严重限制了其在复合材料中的进一步应用。采用浸润法和加热改性剂法制备了稀土改性氧化石墨烯(RE-M-GO),利用X射线衍射(XRD)和扫描电子显微镜(SEM),能谱仪(EDS)对RE-M-GO的形貌和相结构进行表征;并结合傅里叶变换红外(FTIR)和紫外光谱仪器(UV),分析改性氧化石墨烯的官能团结构的变化,探讨其改性机理。结果表明:稀土改性的氧化石墨烯的分散性有明显的改善,主要是由于稀土元素与氧化石墨烯的含氧官能团进行反应形成配位键,生成了新的官能团,降低了氧化石墨烯的界面能及表面能,从而改善了氧化石墨烯的分散性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王莹
李勇
朱靖
赵亚茹
李焕
关键词 稀土氧化石墨烯表面改性分散性    
Abstract:Graphene is an ideal reinforcement for various composites for its unique physical, chemical and mechanical properties. However, the problem of graphene dispersibility and poor wettability severely limits its further development in composites application. (RE-M-GO) were prepared by impregnation method and heating modifier method. The morphology and phase structure of RE-M-GO were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The changes of functional groups of modified graphene oxide were analyzed by means of Fourier transform infrared (FTIR), optical spectra (UV) and energy dispersive spectrometer (EDS),and the modification mechanism was also discussed. The results show that the dispersibility of rare earth modified graphene oxide is obviously improved due to the reaction of rare earth elements with the oxygen-containing functional groups of graphene oxide to form coordination bonds, resulting in a new functional group, which reduces the interfacial energy of graphene oxide and surface energy, thereby the dispersion of graphene oxide is improved.
Key wordsrare earth    graphene oxide    surface modification    dispersibility
收稿日期: 2017-04-10      出版日期: 2018-05-16
中图分类号:  TB321  
通讯作者: 李勇(1975-),男,博士,副教授,研究方向为新型铜基复合材料,联系地址:江西省赣州市章贡区客家大道156号江西理工大学工程研究院(341000),E-mail:liyong0248@163.com     E-mail: liyong0248@163.com
引用本文:   
王莹, 李勇, 朱靖, 赵亚茹, 李焕. 氧化石墨烯表面稀土改性机理[J]. 材料工程, 2018, 46(5): 29-35.
WANG Ying, LI Yong, ZHU Jing, ZHAO Ya-ru, LI Huan. Surface Modification Mechanism of Graphene Oxide by Adding Rare Earths. Journal of Materials Engineering, 2018, 46(5): 29-35.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000429      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/29
[1] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
[2] 李勇,赵亚茹,李焕,等.石墨烯增强金属基复合材料的研究进展[J].材料导报,2016,30(6):71-76.LI Y,ZHAO Y R,LI H,et al.Research progress of metal matrix composites hybridized with graphene as reinforcement[J].Materials Review,2016,30(6):71-76.
[3] TJONG S C.Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanutubes and grapheme nanosheets[J].Materials Science and Engineering:Reports,2013,74(10):281-350.
[4] SUI H Y,ZHAO J C,TANG B,et al.Research progress of graphene-based composite materials[J].Journal of Shanghai University of Engineering Science,2011,25:252-257.
[5] 任鹏刚.石墨烯及石墨烯基复合材料研究进展[J].中国印刷与包装研究,2012,4(3):1-9.REN P G.Research progress of grapheme and graphene-based nanocomposites[J].China Printing and Packaging Study,2012,4(3):1-9.
[6] 吕生华,朱琳琳,李莹,等.氧化石墨烯复合材料的研究现状及进展[J].材料工程,2016,44(12):107-117.LYU S H,ZHU L L,LI Y,et al.Current situation and progress of graphene oxide composites[J].Journal of Materials Engineering,2016,44(12):107-117.
[7] 张丹丹,战再吉.石墨烯/金属复合材料力学性能的研究进展[J].材料工程,2016,44(5):112-119.ZHANG D D,ZHAN Z J.Progress in research on mechanical properties of graphene/metal composites[J].Journal of Materials Engineering,2016,44(5):112-117.
[8] ZHANG Y Y,CHENG Y,PEI Q X,et al.Thermal conductivity of defective grapheme[J].Physics Letters A,2012,376:3668-3672.
[9] LI Z J,YANG B C,ZHANG S R,et al.Graphene oxide with improved electrical conductivity for supercapacitor electrodes[J].Applied Surface Science,2012,258(8):3726-3731.
[10] 黄毅,陈永胜.石墨烯的功能化及其相关应用[J].中国科学B辑:化学,2009,39(9):887-896.HUANG Y,CHEN Y S.Functionlization of graphene and their application[J].Science in China Series B:Chemistry,2009,39(9):887-896.
[11] LOMEDA J R,DOYLE C D,KOSYNKIN D V,et al.Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets[J].J Am Chem Soc,2008,130(48):16201-16206.
[12] WANG X,XING W Y,ZHANG P,et al.Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites[J].Compos Sci Techn,2012,72(6):737-742.
[13] MAO A Q,ZHANG D H,JIN X,et al.Synthesis of graphene oxide sheets decorated by silver nanoparticles in organic phase and their catalytic activity[J].Journal of Physics and Chemistry of Solids,2012,73(8):982-986.
[14] 江祖成,蔡汝秀,张华山.稀土元素分析化学[M].北京:科学出版社,2000:26-30.JIANG Z C,CAI R X,ZHANG H S.Rare earth elemental analytical chemistry[M].Beijing:Science Press,2000:26-30.
[15] JEONG H K,COLAKEROL L,JIN M H,et al.Unoccupied electronic states in graphite oxides[J].Chemical Physics Letters,2008,460(4/6):499-502.
[16] MBHELE Z H,SALEMANE M G,Van SITTERT C G C E,et al.Fabrication and characterization of silver-polyvinyl alcohol nanocomposites[J].Chem Mater,2003,15:5019-5024.
[17] 黄振泉.稀土元素及其应用[J].材料科学与工程学报,1987(4):34-40.HUANG Z Q.Rare earth elements and its application[J].Journal of Materials Science and Engineering,1987(4):34-40.
[18] 宋美慧,王春雨,武高辉.碳纤维增强镁基复合材料稀土表面改性研究[J].热处理技术与装备,2008,29(2):24-27.SONG M H,WANG C Y,WU G H.Investigation of improving corrosion resistance of C fibre reinforced magnesium matrix composites by permeating rare earths[J].Heat Treatment Technology and Equipment,2008,29(2):24-27.
[1] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[2] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[3] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[4] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[5] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[6] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[7] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[8] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[11] 田晋, 高立, 蔡滨, 齐泽昊, 谭业发. 功能化纳米SiO2改性环氧树脂复合材料及其摩擦磨损行为与机制[J]. 材料工程, 2019, 47(11): 92-99.
[12] 刘红娟, 吴仁杰, 谢水波, 刘迎九. 氧化石墨烯及其复合材料对水中放射性核素的吸附[J]. 材料工程, 2019, 47(10): 22-32.
[13] 张国芳, 孙涵丰, 许剑轶, 张羊换. 具可变价态稀土氧化物对Mg2Ni合金储氢性能的催化作用[J]. 材料工程, 2019, 47(10): 90-96.
[14] 杨唐俊, 袁荞龙, 黄发荣. 石英纤维增强含硅芳炔树脂复合材料的界面增强[J]. 材料工程, 2018, 46(8): 148-155.
[15] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn