Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (10): 23-31    DOI: 10.11868/j.issn.1001-4381.2017.000433
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性
柳建1, 朱胜2,*(), 蔡志海1, 张平1, 刘军1, 秦航1, 仝永刚1
1 装甲兵工程学院 机械产品再制造国家工程研究中心, 北京 100072
2 装甲兵工程学院 装备再制造技术国防科技重点实验室, 北京 100072
Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition
Jian LIU1, Sheng ZHU2,*(), Zhi-hai CAI1, Ping ZHANG1, Jun LIU1, Hang QIN1, Yong-gang TONG1
1 National Engineering Research Center for Mechanical Product Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072, China
全文: PDF(5473 KB)   HTML ( 16 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用堆焊熔敷成形技术进行FV520B沉淀硬化不锈钢再制造实验,并通过与基材相应性能进行对比分析,研究FV520B不锈钢MAG堆焊再制造成形层力学特性。结果表明:FV520B不锈钢MAG堆焊再制造成形层具有高强度和高硬度特性,其抗拉强度达到1195MPa,超过基材的1092MPa,屈服强度和硬度平均值分别为776MPa和336HV,与基材的859MPa和353HV相近;但是,再制造成形层的静拉伸伸长率与冲击韧性相对较低,分别为8.72%和61J/cm2,与基材的19.67%和144J/cm2相比差距较大。试样断口和组织分析表明,MAG堆焊再制造成形层的快冷非平衡结晶板条马氏体+NbC,MoC,M23C6等碳化物沉淀强化相组织是其具有高强度和高硬度力学特性的根本原因。不过,缺少时效处理和Cu元素强化相作用,以及夹杂脆性相和大尺寸球形颗粒与基体间的弱界面作用会恶化材料受力时的变形能力,容易引起应力集中并开裂,是再制造成形层具有较低静拉伸伸长率和较差冲击韧性的主要原因。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柳建
朱胜
蔡志海
张平
刘军
秦航
仝永刚
关键词 FV520B沉淀硬化不锈钢再制造MAG堆焊力学性能    
Abstract

Surfacing deposition forming method was adopted to carry out remanufacturing experiment of FV520B precipitation hardening stainless steel. Then the mechanical property characteristic of the remanufacturing layer was tested and studied, contrasted with the corresponding property of substrate. The results show that the remanufacturing layer, formed with MAG surfacing of FV520B precipitation hardening stainless steel has mechanical characteristic with high strength and hardness, the tensile strength reaches 1195MPa, exceeds 1092MPa of substrate, yield strength is 776MPa and average hardness is 336HV, is close to the corresponding property of substrate which is 859MPa and 353HV respectively; however, the elongation and impact toughness of the remanufacturing layer is merely 8.92% and 61J/cm2 respectively, it has a large gap with the corresponding property 19.72% and 144J/cm2 respectively of substrate. Fracture and microstructure analysis on specimens shows that the microstructure of remanufacturing layer is fast cooling non-equilibrium crystallized lath martensite, and carbide precipitated strengthening phase such as NbC, MoC, M23C6, etc, which is the reason that remanufacturing layer has high strength and high hardness. But as lack of aging treatment and Cu strengthening phase, and the weak interface between contaminating brittle phase or large size spherical particles and substrate will deteriorate the deformability and induce stress concentration and cracking when the material is load-carrying, and is the main reason of the remanufacturing layer having lower static tensile elongation and impact toughness.

Key wordsFV520B precipitation hardening stainless steel    remanufacturing    MAG surfacing    mechanical property
收稿日期: 2017-04-15      出版日期: 2017-10-18
中图分类号:  TG117.1  
  TG434  
基金资助:国家自然科学基金资助项目(51405510);国家自然科学基金资助项目(51375492);国家自然科学基金资助项目(51575527)
通讯作者: 朱胜     E-mail: zusg@sohu.com550123310
作者简介: 朱胜(1964-), 男, 教授, 博导, 主要研究方向为机械工程和再制造, 联系地址:北京市丰台区杜家坎21号装甲兵工程学院装备再制造技术国防科技重点实验室(100072), E-mail:zusg@sohu.com550123310@qq.com
引用本文:   
柳建, 朱胜, 蔡志海, 张平, 刘军, 秦航, 仝永刚. FV520B沉淀硬化不锈钢的MAG堆焊再制造力学特性[J]. 材料工程, 2017, 45(10): 23-31.
Jian LIU, Sheng ZHU, Zhi-hai CAI, Ping ZHANG, Jun LIU, Hang QIN, Yong-gang TONG. Mechanical Characteristic of Remanufacturing of FV520B Precipitation Hardening Stainless Steel Using MAG Surfacing Deposition. Journal of Materials Engineering, 2017, 45(10): 23-31.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000433      或      http://jme.biam.ac.cn/CN/Y2017/V45/I10/23
Element C Mn Si S P Cr Ni Cu Mo Nb Fe
Base metal 0.062 0.67 0.44 0.005 0.026 13.37 5.33 1.46 1.44 0.29 Bal
Wire 0.033 0.55 0.35 0.011 0.017 14.2 6.42 - 1.17 0.33 Bal
Table 1  FV520B不锈钢基材及再制造丝材化学成分(质量分数/%)
Fig.1  层间正交交替堆积法示意图[23]
Fig.2  拉伸试样尺寸设计和断后试样实物图
(a)试样尺寸设计;(b)断裂试样照片
Fig.3  冲击试样照片
Fig.4  硬度测试取点位置示意图
Sample Tensile strength/
MPa
Yield strength/
MPa
Elongation/
%
Ramanufacturing layer 1195 776 8.72
Base metal 1092 859 19.67
Table 2  再制造成形层与基材静拉伸性能
Sample Impact energy/J Impact toughness/(J·cm-2)
Remanufacturing 15.25 61
layer
Base metal 36 144
Table 3  再制造成形层与基材冲击韧性
Fig.5  再制造成形层沿高度方向硬度分布规律
Fig.6  再制造成形层与基材拉伸试样断口SEM照片
(a)成形层试样断口;(b)基材试样断口
Fig.7  再制造成形层与基材冲击试样断口SEM照片
(a)成形层试样断口;(b)基材试样断口
Fig.8  再制造成形层显微组织
(a)光学显微组织照片;(b)透射电镜照片
Fig.9  再制造成形层和基材XRD衍射谱
(a)再制造成形层;(b)基材
Fig.10  再制造成形层试样断口中的大尺寸球形颗粒
(a)静拉伸试样断口;(b)冲击试样断口
1 李荣朋. 铸造马氏体沉淀硬化不锈钢叶轮材料及工艺研究[D]. 沈阳: 沈阳工业大学, 2006.
1 LI R P. The investigation of casting martensite precipitation hardening stainless steel impeller materials and technics[D]. Shenyang:Shenyang University of Technology, 2006.
2 任维彬, 董世运, 徐滨士, 等. FV520(B)钢叶片模拟件激光再制造工艺优化与修复[J]. 材料工程, 2015, 43 (1): 6- 12.
doi: 10.11868/j.issn.1001-4381.2015.01.002
2 REN W B , DONG S Y , XU B S , et al. Process optimization and forming repair of laser remanufacture of FV520(B) steel blade simulator[J]. Journal of Materials Engineering, 2015, 43 (1): 6- 12.
doi: 10.11868/j.issn.1001-4381.2015.01.002
3 陈金明, 霍海燕, 胡创国. FV520B钢高速铣削力试验研究[J]. 风机技术, 2014, (5): 58- 61.
3 CHEN J M , HUO H Y , HU C G . Experimental study on milling force of high-speed milling FV520B steel[J]. Blower Fan Technology, 2014, (5): 58- 61.
4 李宏坤, 赵鹏仕, 李精忠, 等. FV520B不锈钢铣削稳定叶瓣图的构建及实验[J]. 振动、测试与诊断, 2015, 35 (4): 722- 726.
4 LI H K , ZHAO P S , LI J Z , et al. Construct and experimentation on milling stability lobes of FV520B stainless steel[J]. Journal of Vibration, Measurement & Diagnosis, 2015, 35 (4): 722- 726.
5 赵磊, 胡创国, 武导侠, 等. FV520B钢铣削参数优化及振动试验研究[J]. 机床与液压, 2013, 41 (1): 54- 57.
5 ZHAO L , HU C G , WU D X , et al. Experimental study on milling parameter optimization and vibration of high-speed milling FV520B steel[J]. Machine Tool & Hydraulics, 2013, 41 (1): 54- 57.
6 陈丰君, 杜晓东, 郎经纬, 等. FV(520) B不锈钢高温高压条件下硫化腐蚀机理[J]. 材料热处理学报, 2015, 36 (6): 211- 215.
6 CHEN F J , DU X D , LANG J W , et al. Sulfidation mechanism of FV(520) B stainless steel in high temperature and high pressure environment[J]. Transactions of Materials and Heat Treatment, 2015, 36 (6): 211- 215.
7 孙蛟, 陈颂英, 丁进, 等. FV520B钢在H2S/CO2环境下的应力腐蚀[J]. 东北大学学报(自然科学版), 2015, 36 (12): 1790- 1794.
doi: 10.3969/j.issn.1005-3026.2015.12.026
7 SUN J , CHEN S Y , DING J , et al. Stress corrosion behavior of FV520B steel in H2S/CO2 environment[J]. Journal of Northeastern University(Natural Science Edition), 2015, 36 (12): 1790- 1794.
doi: 10.3969/j.issn.1005-3026.2015.12.026
8 王光存, 李剑峰, 贾秀杰, 等. 金属材料FV520B冲蚀模型的建立与验证[J]. 哈尔滨工程大学学报, 2015, 36 (5): 714- 719.
8 WANG G C , LI J F , JIA X J , et al. Establishment and verification of an erosion model for metal materials FV520B[J]. Journal of Harbin Engineering University, 2015, 36 (5): 714- 719.
9 CHU Q L , ZHANG M , LI J H . Failure analysis of impeller made of FV520B martensitic precipitated hardening stainless steel[J]. Engineering Failure Analysis, 2013, 34, 501- 510.
doi: 10.1016/j.engfailanal.2013.07.003
10 WANG J L , ZHANG Y L , LIU S J , et al. Competitive giga-fatigue life analysis owing to surface defect and internal inclusion for FV520B-I[J]. International Journal of Fatigue, 2016, 87, 203- 209.
doi: 10.1016/j.ijfatigue.2016.01.028
11 LIU C , LIU S J , GAO S B , et al. Fatigue life assessment of the centrifugal compressor impeller with cracks based on the properties of FV520B[J]. Engineering Failure Analysis, 2016, 66, 177- 186.
doi: 10.1016/j.engfailanal.2016.04.028
12 郭强, 郭杏林, 樊俊铃, 等. 基于固有耗散的FV520B钢高周疲劳性能研究[J]. 金属学报, 2015, 51 (4): 400- 406.
12 GUO Q , GUO X L , FAN J L , et al. Research on high-cycle fatigue behavior of FV520B steel based on intrinsic dissipation[J]. Acta Metallurgica Sinica, 2015, 51 (4): 400- 406.
13 郝胜智, 赵丽敏, 王慧慧, 等. 强流脉冲电子束FV520B钢表面改性组织及耐腐蚀性能[J]. 真空科学与技术学报, 2015, 35 (12): 1519- 1523.
13 HAO S Z , ZHAO L M , WANG H H , et al. Surface modification of FV520B steel by high current pulsed electron beam[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35 (12): 1519- 1523.
14 包翠敏, 庄春瑜, 陈蕊, 等. 压缩机叶轮用不锈钢化学镀Ni-P工艺及镀层性能[J]. 材料保护, 2015, 48 (6): 7- 12.
14 BAO C M , ZHUANG C Y , CHEN R , et al. Process for nickel-phosphorous electroplating of stainless steel used for impeller channels of compressor and wear resistance and corrosion resistance of the coating[J]. Journal of Materials Protection, 2015, 48 (6): 7- 12.
15 韩增福, 张飞雄. 离心叶轮用材料真空钎焊工艺研究[J]. 通用机械, 2003, (7): 31- 33.
15 HAN Z F , ZHANG F X . Study on the process of vacuum brazing of FV520B material prepared for radial impeller[J]. General Machinery, 2003, (7): 31- 33.
16 张敏, 李岩, 李继红, 等. 一种风机转子用FV520(B)不锈钢碱性焊条的研制[J]. 中国机械工程, 2011, 22 (22): 2749- 2753.
16 ZHANG M , LI Y , LI J H , et al. Development of one kind of FV520(B) stainless steel matching with alkalinity welding electrode used on fan impeller[J]. China Mechanical Engineering, 2011, 22 (22): 2749- 2753.
17 张敏, 刘明志, 张明, 等. 奥氏体化合金元素Mn和Ni对FV520B焊缝组织与力学性能的影响[J]. 材料工程, 2016, 44 (3): 40- 45.
doi: 10.11868/j.issn.1001-4381.2016.03.007
17 ZHANG M , LIU M Z , ZHANG M , et al. Microstructure and mechanical properties of FV520B affected by austenitizing elements Mn and Ni[J]. Journal of Materials Engineering, 2016, 44 (3): 40- 45.
doi: 10.11868/j.issn.1001-4381.2016.03.007
18 牛靖, 董俊明, 薛锦, 等. FV520(B)与18CrMnMoV焊接接头力学性能分析[J]. 焊接学报, 2006, 27 (12): 101- 105.
doi: 10.3321/j.issn:0253-360X.2006.12.026
18 NIU J , DONG J M , XUE J , et al. Analysis of mechanical properties of FV520(B) stainless steel and 18CrMnMoV steel welded joints[J]. Transactions of the China Welding Institution, 2006, 27 (12): 101- 105.
doi: 10.3321/j.issn:0253-360X.2006.12.026
19 周倩青, 翟玉春. 高强高韧FV520B马氏体钢的时效工艺优化[J]. 金属学报, 2009, 45 (10): 1249- 1254.
doi: 10.3321/j.issn:0412-1961.2009.10.016
19 ZHOU Q Q , ZHAI Y C . Aging process optimization for a high strength and toughness of FV520B martensitic steel[J]. Acta Metallurgica Sinica, 2009, 45 (10): 1249- 1254.
doi: 10.3321/j.issn:0412-1961.2009.10.016
20 许文博, 石伟, 张欣. 马氏体型沉淀硬化不锈钢失效过程的组织转变[J]. 材料热处理学报, 2013, 34 (11): 139- 143.
20 XU W B , SHI W , ZHANG X . Microstructural transformation of martensite precipitation hardening stainless steel during aging process[J]. Transactions of Materials and Heat Treatment, 2013, 34 (11): 139- 143.
21 樊俊铃, 郭杏林, 吴承伟, 等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26 (1): 61- 67.
21 FAN J L , GUO X L , WU C W , et al. Heat treatment on fatigue property of FV520B steel[J]. Journal of Materials Research, 2012, 26 (1): 61- 67.
22 李法双, 李方义, 贾秀杰, 等. FV520B激光熔覆FeCr合金的性能分析[J]. 工具技术, 2015, 49 (10): 55- 58.
doi: 10.3969/j.issn.1000-7008.2015.10.013
22 LI F S , LI F Y , JIA X J , et al. Performance analysis of FeCr repaired coating on FV520B steel by laser cladding[J]. Tool Technology, 2015, 49 (10): 55- 58.
doi: 10.3969/j.issn.1000-7008.2015.10.013
23 柳建. 基于弧焊机器人的GMAW堆焊熔敷无支撑成形研究[D]. 北京: 装甲兵工程学院, 2011.
23 LIU J. Study of GMAW surface forming with non-support structure based on arc weld robot[D]. Beijing:Academy of Armored Forces Engineering, 2011.
24 GASEM Z M . Fatigue crack growth behavior in powder-metal-lurgy 6061 aluminum alloy reinforced with submicron Al2O3 particulates[J]. Composites Part B, 2012, 43 (8): 3020- 3025.
doi: 10.1016/j.compositesb.2012.05.031
25 李微, 陈振华, 陈鼎, 等. 喷射沉积SiCp/Al-7Si复合材料的疲劳裂纹扩展[J]. 金属学报, 2011, 47 (1): 102- 108.
25 LI W , CHEN Z H , CHEN D , et al. Growth behavior of fatigue crack in spray-formed SiCp/Al-7Si composite[J]. Acta Metallurgica Sinica, 2011, 47 (1): 102- 108.
26 贾凤翔, 侯若明, 贾晓滨. 不锈钢性能及选用[M]. 北京: 化学工业出版社, 2013.
26 JIA F X , HOU R M , JIA X B . Property and selection of stainless steel[M]. Beijing: Chemical Industry Press, 2013.
27 牛靖, 董俊明, 薛锦. 沉淀硬化不锈钢FV520(B)的析出硬化及韧性[J]. 机械工程学报, 2007, 43 (12): 78- 83.
doi: 10.3321/j.issn:0577-6686.2007.12.015
27 NIU J , DONG J M , XUE J . Precipitation-hardening and toughness of precipitation-hardening stainless steel FV520(B)[J]. Chinese Journal of Mechanical Engineering, 2007, 43 (12): 78- 83.
doi: 10.3321/j.issn:0577-6686.2007.12.015
28 HATTESTRAND P , NILSSONA J O , STILLER K , et al. Precipitation hardening in a 12%Cr-9%Ni-4%Mo-2%Cu stainless steel[J]. Acta Materialia, 2004, 52 (4): 1023- 1037.
doi: 10.1016/j.actamat.2003.10.048
29 张春铭. 含铜钢的研究[J]. 钢铁, 1964, (1): 41- 43.
29 ZHANG C M . Research of copper-bearing steel[J]. Iron and Steel, 1964, (1): 41- 43.
30 尹桂全, 杨才福, 吕忆农, 等. 含铜钢的时效硬化[J]. 钢铁研究学报, 2004, 16 (4): 61- 63.
30 YIN G Q , YANG C F , LV Y N , et al. Age hardening of ultra-low-carbon steel bearing copper[J]. Journal of Iron and Steel Research, 2004, 16 (4): 61- 63.
31 李能, 郭绍庆, 周标, 等. 时效处理对0Cr15Ni5Cu4Nb钢焊接接头力学性能的影响[J]. 航空材料学报, 2012, 32 (4): 38- 43.
31 LI N , GUO S Q , ZHOU B , et al. Influence of aging heat treatment to mechanical properties of joints welded by 0Cr15Ni5Cu4Nb steel[J]. Journal of Aeronautical Materials, 2012, 32 (4): 38- 43.
32 张永权, 刘天军, 杨才福. 铜的时效行为及其对06NiCuCrMoNb钢力学性能的影响[J]. 钢铁研究学报, 1998, 10 (4): 41- 45.
32 ZHANG Y Q , LIU T J , YANG C F . Age-hardening behavior of Cu and its effect on mechanical properties of 06NiCuCrMoNb steel[J]. Journal of Iron and Steel Research, 1998, 10 (4): 41- 45.
33 马涛, 杨桂宇, 邓美乐, 等. 含铜钢的研究现状及展望[J]. 热加工工艺, 2017, 46 (2): 36- 39.
33 MA T , YANG G Y , DENG M L , et al. Research development status of copper-bearing steel[J]. Hot Working, 2017, 46 (2): 36- 39.
34 李娜. 铜在钢中的作用综述[J]. 辽宁科技大学学报, 2011, 34 (2): 157- 162.
34 LI N . Study on effects of copper in steel[J]. Journal of University of Science and Technology Liaoning, 2011, 34 (2): 157- 162.
35 CHEN Y Q , PAN S P , ZHOU M Z , et al. Effects of inclusions, grain boundaries and grain orientations on the fatigue crack initiation and growth behavior of 2524-T3 Al alloy[J]. Materials Science and Engineering:A, 2013, 580, 150- 158.
doi: 10.1016/j.msea.2013.05.053
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn