Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (5): 11-21    DOI: 10.11868/j.issn.1001-4381.2017.000440
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯复合材料吸附铀的研究进展
刘红娟1, 谢水波2,3,*(), 张希晨3, 刘迎九3, 曾涛涛3
1 南华大学 核科学技术学院, 湖南 衡阳 421001
2 南华大学 铀矿冶生物技术国防重点学科实验室, 湖南 衡阳 421001
3 南华大学 污染控制与资源化技术湖南省重点实验室, 湖南 衡阳 421001
Research Progress of Graphene Oxide Composite Materials for Uranium Adsorption
Hong-juan LIU1, Shui-bo XIE2,3,*(), Xi-chen ZHANG3, Ying-jiu LIU3, Tao-tao ZENG3
1 Institute of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China
2 Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, Hunan, China
3 Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
全文: PDF(2027 KB)   HTML ( 24 )  
输出: BibTeX | EndNote (RIS)      
摘要 

氧化石墨烯由于具有超大的比表面积、高强度和化学稳定性好等优点,其在环保领域作为含铀废水吸附材料的应用潜能备受关注。本文综述了近年来石墨烯基复合材料吸附水溶液中铀的研究现状及进展,介绍了石墨烯基复合材料对铀的吸附性能,分析了溶液pH值、温度、离子强度、接触时间和吸附剂用量等因素对吸附效果影响的原理,阐述了通过表面络合模型,光谱分析和理论计算等方法探讨氧化石墨烯复合材料的微观形貌结构与铀吸附效果之间的内在联系,最后研究了氧化石墨烯复合材料吸附铀研究中面临的挑战,对石墨烯材料与轴的相互作用机理及其在环保方面的开发应用进行了展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘红娟
谢水波
张希晨
刘迎九
曾涛涛
关键词 石墨烯复合材料吸附微观结构    
Abstract

Graphene oxide has potential application prospects in the field of environmental protection as the adsorption material of uranium-containing wastewater due to its many advantages such as its large specific surface area, high mechanical strength and good chemical stability, which has attracted much attention. The research situation and progress of uranium adsorption of graphene-oxide composite materials were summarized in this paper. The principle about effect of solution pH value, temperature, ionic strength, contact time and adsorbent dosage on uranium adsorption by graphene oxide composite materials was analyzed. The study on internal relationship between the microstructure and micromorphology of graphene oxide composite materials and uranium adsorption capacity by the methods of surface complexation model, spectral analysis and theoretical calculation was elaborated. Meanwhile, the challenges in the study of the adsorption of uranium by graphene oxide composite materials were studied, the research on the interaction mechanism of uranium and graphene oxide materials and their development and application in environmental protection were prospected.

Key wordsgraphene    composite material    uranium    adsorption    microstructure
收稿日期: 2017-04-11      出版日期: 2018-05-16
中图分类号:  O613.71  
  TB33  
基金资助:国家自然科学基金资助项目(11175081);湖南省自然科学基金(2018JJ3420);湖南省教育厅资助项目(15C1178);湖南省研究生科研创新项目(CX2016B427)
通讯作者: 谢水波     E-mail: xiesbmr@263.net
作者简介: 谢水波(1964-), 男, 教授, 博士研究生导师, 主要从事新型吸附材料在核环境治理与修复的研究, 联系地址:湖南省衡阳市南华大学铀矿冶生物技术国防重点学科实验室(421001), E-mail:xiesbmr@263.net
引用本文:   
刘红娟, 谢水波, 张希晨, 刘迎九, 曾涛涛. 氧化石墨烯复合材料吸附铀的研究进展[J]. 材料工程, 2018, 46(5): 11-21.
Hong-juan LIU, Shui-bo XIE, Xi-chen ZHANG, Ying-jiu LIU, Tao-tao ZENG. Research Progress of Graphene Oxide Composite Materials for Uranium Adsorption. Journal of Materials Engineering, 2018, 46(5): 11-21.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000440      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/11
Fig.1  石墨烯结构示意图[23]
Fig.2  氧化石墨烯的Dékán结构模型[24]
AdsorbentpHAmbient temperature/KAdsorption capacity/(mg · g-1)Isotherm modelThermodynamicsRef
GO3.4529894.25Langmiur isothermEndothermic/spontaneous[34]
GO4.0RT299Langmiur isothermEndothermic/spontaneous[35]
rGO4.0RT47n.a.n.a.[35]
AOMGO5.0298284.9Langmiur isothermEndothermic/spontaneous[36]
GO@sepiolite5.0298161.29Langmiur isothermEndothermic/spontaneous[37]
GO-CNTs5.0298.1586.1Langmiur isothermEndothermic/spontaneous[38]
PAO/rGO4.0293872Langmiur isothermEndothermic/spontaneous[39]
CD/GO5.028897.3Langmiur isothermn.a.[40]
GO-NH25.5298.15215.2Langmiur isothermEndothermic/spontaneous[41]
CGO4.5298240.1Langmiur isothermEndothermic/spontaneous[42]
PA-GO5.5298124.3Langmiur isothermn.a.[43]
HO-CB[6]/GO5.0298301.6Langmiur isothermEndothermic/spontaneous[44]
GOS6.0298.15309.09Langmiur isothermEndothermic/spontaneous[45]
GONRs4.5298394.1Langmiur isothermEndothermic/spontaneous[46]
GOs6.829399Langmiur isotherm[47]
Fe3O4/GO529828.32Langmiur isothermEndothermic/spontaneous[48]
Graphene oxides4.4298330.82Langmiur isothermEndothermic/spontaneous[49]
OGO5.5303291.8n.a.Endothermic/spontaneous[50]
GO nanosheets5.029397.5n.a.Endothermic/spontaneous[51]
Fe3O4/GO5.529369.49n.a.Endothermic[52]
GO-ACF5.5298298LangmiurIsotherm[53]
GO nanosheets4.0303208.33Langmiur isothermEndothermic/spontaneous[54]
CB[6]/GO/Fe3O45.029866.8n.a.n.a.[55]
PANI/GO5.02931960n.a.n.a.[56]
PAM/GO5.0295166.12Langmiur isothermEndothermic/spontaneous[57]
CoFe2O4-rGO6.0298227.2Langmiur isothermEndothermic/spontaneous[58]
MnO2-Fe3O4-rGO6.0328108.7Langmiur isothermEndothermic/spontaneous[59]
Table 1  石墨烯基复合材料对铀的吸附容量及主要参数
Fig.3  铀在NZVI/rGO上的吸附与还原[79]
Fig.4  NZVI、NZVI/GO、U(Ⅵ)作用后的NZVI和NZVI/GO以及参考样品的XANES光谱(a)和EXAFS光谱(b)(T=(25±1)℃, I=0.01mol/L NaClO4, pH 5.0)[79]
Fig.5  rGOs-铀酰配合物和GOs-铀酰配合物的DFT优化几何结构[66]
1 王劲松, 邹晓亮, 贾亮, 等. α-酮戊二酸改性壳聚糖对低浓度U (Ⅵ)的吸附性能[J]. 原子能科学技术, 2015, 49 (2): 255- 262.
doi: 10.7538/yzk.2015.49.02.0255
1 WANG J S , ZOU X L , JIA L , et al. Adsorption performance of low-strength U (Ⅵ) on α-ketoglutaric acid modified chitosan[J]. Atomic Energy Science and Technology, 2015, 49 (2): 255- 262.
doi: 10.7538/yzk.2015.49.02.0255
2 史冬峰, 唐振平, 黄华勇, 等. 磁性氧化石墨烯/β-环糊精复合材料对U (Ⅵ)的吸附性能及机理[J]. 原子能科学技术, 2016, 50 (9): 1556- 1564.
doi: 10.7538/yzk.2016.50.09.1556
2 SHI D F , TANG Z P , HUANG H Y , et al. Adsorption characteristic and mechanism of Uranium (Ⅵ) on magnetism graphene oxide/β-cyclodextrin composite[J]. Atomic Energy Science and Technology, 2016, 50 (9): 1556- 1564.
doi: 10.7538/yzk.2016.50.09.1556
3 商照荣. 贫化铀的环境污染影响及其对人体健康的危害[J]. 辐射防护, 2005, (1): 56- 61.
3 SHANG Z R . Impact of depleted uranium on environmental and human health[J]. Radiation Protection, 2005, (1): 56- 61.
4 周书葵, 娄涛, 庞朝晖. 放射性废水处理技术[M]. 北京: 化学工业出版社, 2012: 7.
4 ZHOU S K , LOU T , PANG C H . Radioactive waste water treatment technology[M]. Beijing: Chemical Industry Press, 2012: 7.
5 WANG J S , BAO Z L , CHEN S G , et al. Removal of uranium from aqueous solution by chitosan and ferrous ions[J]. International Conference on Nuclear Engineering, 2010, 133 (8): 735- 740.
6 MELISA S , GUSTAVO A , ROSA M . Uranium uptake by montmorillonite-biomass complexes[J]. Industrial&Engineering Chemistry Research, 2013, 52 (6): 2273- 2279.
7 YUAN L Y , LIU Y L , SHI W Q , et al. High performance of phosphonate-functionalized mesoporous silica for U (Ⅵ) adsorption from aqueous solution[J]. Dalton Trans, 2011, 40, 7446- 7453.
doi: 10.1039/c1dt10085h
8 ZHANG X F , JIAO C S , WANG J , et al. Removal of uranium (Ⅵ) from aqueous solutions by magnetic Schiff base:kinetic and thermodynamic investigation[J]. Chemical Engineering Journal, 2012, 198, 412- 419.
9 LI X Y , ZHANG M , LIU Y B , et al. Removal of U (Ⅵ) in aqueous solution by nanoscale zero-valent iron (nZVI)[J]. Exposure and Health, 2013, 5 (1): 31- 40.
doi: 10.1007/s12403-013-0084-4
10 ZHAO D L , WANG X B , YANG S T , et al. Impact of water quality parameters on the sorption of U (Ⅵ) onto hematite[J]. Journal of Environmental Radioactivity, 2012, 103 (1): 20- 29.
doi: 10.1016/j.jenvrad.2011.08.010
11 BELLONI F , KUTAHYALI C , RONDINELLA V V , et al. Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environment Science&Technology, 2009, 43, 1250- 1255.
12 LIU H J , XIE S B , XIA L S , et al. Study on adsorptive property of bentonite for cesium[J]. Environment Earth Science, 2016, 75 (2): 148.
doi: 10.1007/s12665-015-4941-2
13 SCHINDLER M , LEGRAND C A , JR M F H . Alteration, adsorption and nucleation processes on clay-water interfaces:mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale[J]. Geochimica Et Cosmochimica Acta, 2015, 153, 15- 36.
doi: 10.1016/j.gca.2014.12.020
14 VILLA-ALFAGEME M , HURTADO S , MRABET S E , et al. Uranium immobilization by FEBEX bentonite and steel barriers in hydrothermal conditions[J]. Chemical Engineering Journal, 2015, 269, 279- 287.
doi: 10.1016/j.cej.2015.01.134
15 GUNATHILAKE C , GORKA J , DAI S , et al. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11650- 11659.
doi: 10.1039/C5TA02863A
16 LIU H J , JING P F , LIU , et al. Synthesis of β-cyclodextrin functionalized silica gel and its application for adsorption of uranium (Ⅵ)[J]. Journal of Radioanalytical&Nuclear Chemistry, 2016, 310 (1): 1- 8.
17 ZHOU L , ZOU H , WANG Y , et al. Adsorption of uranium (Ⅵ) from aqueous solution using phosphonic acid-functionalized silica magnetic microspheres[J]. Journal of Radioanalytical&Nuclear Chemistry, 2016, 310 (3): 1- 9.
18 HUMELNICU D , BLEGESCU C , GANJU D . Removal of uranium (Ⅵ) and thorium (Ⅳ) ions from aqueous solutions by functionalized silica:kinetic and thermodynamic studies[J]. Journal of Radioanalytical&Nuclear Chemistry, 2014, 299 (3): 1183- 1190.
19 BARKAT M , NIBOU D , AMOKRANE S , et al. Uranium (Ⅵ) adsorption on synthesized 4A and P1 zeolites:equilibrium, kinetic, and thermodynamic studies[J]. Comptes Rendus Chimie, 2015, 18 (3): 261- 269.
doi: 10.1016/j.crci.2014.09.011
20 SHARIFIPOUR F , HOJATI S , LANDI A , et al. Kinetics and thermodynamics of lead adsorption from aqueous solutions onto iranian sepiolite and zeolite[J]. International Journal of Environmental Research, 2015, 9 (3): 1001- 1010.
21 SHAKUR H R , SARAEE K R E , ABDI M R , et al. Selective removal of uranium ions from contaminated waters using modified-X nanozeolite[J]. Applied Radiation&Isotopes, 2016, 118, 43- 55.
22 BAKATULA E N , MOLAUDZI R , NEKHUNGUNI P , et al. The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite[J]. Water Air&Soil Pollution, 2017, 228 (1): 5.
23 VAN N R . Moving towards a graphene world[J]. Nature, 2006, 442 (7100): 228- 229.
doi: 10.1038/442228a
24 SZABO T , BERKESI O , FORGO P , et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18 (11): 2740- 2749.
doi: 10.1021/cm060258+
25 ROMANCHUK A Y , SLESAREV A S , KALMYKOV S N , et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2321- 2327.
doi: 10.1039/c2cp44593j
26 王云, 顾泽兴, 王正上, 等. 氧化石墨烯纳米带的可控制备及其对铀的吸附研究[C]//第十三届全国核化学与放射化学学术研讨会. 大理: 中国化学会, 中国核学会, 2014: 38.
26 WANG Y, GU Z X, WANG Z S, et al. Controllable preparation of graphene oxide nanoribbons and their adsorption to uranium[C]//The Thirteenth National Conference on nuclear chemistry and radiation chemistry. Dali: Chinese Chemical Society, Chinese Nuclear Society, 2014: 38.
27 JIN Z X , WANG X X , WANG X K , et al. Sequestration of 4-nonylphenol and bisphenol-A on magnetic reduced graphene oxides:a combined experimental and theoretical studies[J]. Environment Science&Technology, 2015, 49, 9168- 9175.
28 WANG X X , YU S J , JIN J , et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions[J]. Science Bulletin, 2016, 61 (20): 1583- 1593.
doi: 10.1007/s11434-016-1168-x
29 WANG X X , YANG S B , WANG X K , et al. Different interaction mechanisms of Eu (Ⅲ) and 243Am (Ⅲ) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation[J]. Environment Science&Technology, 2015, 49, 11721- 11728.
30 CHEN Y T , ZHANG W , WANG X K , et al. Understanding the adsorption mechanism of Ni (Ⅱ) on graphene oxides by batch experiments and density functional theory studies[J]. Science China Chemistry, 2016, 59, 412- 419.
doi: 10.1007/s11426-015-5549-9
31 YU S J , WANG X X , WANG X K , et al. Sorption of radionuclides from aqueous systems onto graphene oxide-based materials:a review[J]. Inorganic Chemistry Frontiers, 2015, 46 (32): 593- 612.
32 曹明莉, 张会霞, 张聪, 等. 石墨烯及其复合材料在重金属离子吸附方面的应用[J]. 功能材料, 2016, 47 (8): 08001- 08007.
32 CAO M L , ZHANG H X , ZHANG C , et al. Graphene-containing composite materials for heavy metal ions adsorption[J]. Journal of Functional Materials, 2016, 47 (8): 08001- 08007.
33 吕生华, 朱琳琳, 李莹, 等. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程, 2016, 44 (12): 107- 117.
doi: 10.11868/j.issn.1001-4381.2016.12.017
33 LYU S H , ZHU L L , LI Y , et al. Current situation and progress of graphene oxide composites[J]. Journal of Materials Engineering, 2016, 44 (12): 107- 117.
doi: 10.11868/j.issn.1001-4381.2016.12.017
34 WANG C L , LI Y , LIU C L . Sorption of uranium from aqueous solutions with graphene oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304 (3): 1017- 1025.
doi: 10.1007/s10967-014-3855-x
35 LI Z J , CHEN F , YUAN L Y , et al. Uranium (Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210, 539- 546.
doi: 10.1016/j.cej.2012.09.030
36 ZHAO Y G , LI J X , ZHANG S W , et al. Efficient enrichment of uranium (Ⅵ) on amidoximated magnetite/graphene oxide composites[J]. RSC Advances, 2013, 3, 18952- 18959.
doi: 10.1039/c3ra42236d
37 CHENG H X , ZENG K F , YU J T . Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298 (1): 599- 603.
doi: 10.1007/s10967-012-2406-6
38 GU Z X , WANG Y , TANG J , et al. The removal of uranium (Ⅵ) from aqueous solution by graphene oxide-carbon nanotubes hybrid aerogels[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (3): 1835- 1842.
39 SHAO D D , LI J X , WANG X K . Poly (amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater[J]. Science China Chemistry, 2014, 57 (11): 1449- 1458.
doi: 10.1007/s11426-014-5195-7
40 SONG W C , SHAO D D , LU S S , et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry, 2014, 57 (9): 1291- 1299.
doi: 10.1007/s11426-014-5119-6
41 LIU S J , LI S , ZhANG H X , et al. Removal of uranium (Ⅵ) from aqueous solution using graphene oxide and its amine-functionalized composite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309 (2): 607- 614.
42 WANG Z S , WANG Y , LIAO J L , et al. Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308 (3): 1095- 1102.
doi: 10.1007/s10967-015-4598-z
43 LIU S J , MA J G , ZHANG W Q , et al. Three-dimensional graphene oxide/phytic acid composite for uranium (Ⅵ) sorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306 (2): 507- 514.
doi: 10.1007/s10967-015-4162-x
44 SHAO L , ZHONG J R , REN Y M , et al. Perhydroxy-CB[6] decorated graphene oxide composite for uranium (Ⅵ) removal[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311 (1): 627- 635.
doi: 10.1007/s10967-016-5067-z
45 ZHANG Z B , QIU Y F , DAI Y , et al. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium (Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310 (2): 547- 557.
doi: 10.1007/s10967-016-4813-6
46 WANG Y , WANG Z S , GU Z X , et al. Uranium (Ⅵ) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304 (3): 1329- 1337.
doi: 10.1007/s10967-015-3981-0
47 WANG X X , CHEN Z S , WANG X K . Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions[J]. Science China Chemistry, 2015, 58 (11): 1766- 1773.
doi: 10.1007/s11426-015-5435-5
48 ZHAO D L , CHEN L L , SUN M , et al. Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U (Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306 (1): 221- 229.
doi: 10.1007/s10967-015-4064-y
49 TAO X Q , YAO X B , LU S S , et al. Efficient removal of radionuclide U (Ⅵ) from aqueous solutions by using graphene oxide nanosheets[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (1): 245- 253.
doi: 10.1007/s10967-014-3429-y
50 LIU X , WANG X X , LI J X , et al. Ozonated graphene oxides as high efficient sorbents for Sr (Ⅱ) and U (Ⅵ) removal from aqueous solutions[J]. Science China Chemistry, 2016, 59 (7): 869- 877.
doi: 10.1007/s11426-016-5594-z
51 ZHAO G X , WEN T , YANG X , et al. Preconcentration of U (Ⅵ) ions on few-layered graphene oxide nanosheets from aqueous solutions[J]. Dalton Transactions, 2012, 41 (20): 6182- 6188.
doi: 10.1039/c2dt00054g
52 ZONG P F , WANG S F , ZHAO Y L , et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (Ⅵ) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 220, 45- 52.
doi: 10.1016/j.cej.2013.01.038
53 CHEN S P , HONG J X , YANG H X , et al. Adsorption of uranium (Ⅵ) from aqueous solution using a novel graphene oxide-activated carbon felt composite[J]. Journal of Environmental Radioactivity, 2013, 126 (4): 253- 258.
54 DING C C , CHENG W C , SUN Y B , et al. Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions, 2014, 43, 3888- 3896.
doi: 10.1039/C3DT52881B
55 SHAO L , WANG X F , REN Y M , et al. Facile fabrication of magnetic cucurbitt[6] uril/graphene oxide composite and application for uranium removal[J]. Chemical Engineering Journal, 2016, 286, 311- 319.
doi: 10.1016/j.cej.2015.10.062
56 SHAO D D , HOU G S , LI J X , et al. PANI/GO as a super adsorbent for the selective adsorption of uranium (Ⅵ)[J]. Chemical Engineering Journal, 2014, 255, 604- 612.
doi: 10.1016/j.cej.2014.06.063
57 SONG W C , WANG X X , WANG Q , et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics, 2015, 17, 398- 406.
doi: 10.1039/C4CP04289A
58 TAN L C , LIU Q , SONG D L , et al. Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite:kinetics and thermodynamics studies[J]. New Journal of Chemistry, 2015, 39, 2832- 2838.
doi: 10.1039/C4NJ01981D
59 TAN L C , WANG J , LIU Q , et al. The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium (Ⅵ) removal[J]. New Journal of Chemistry, 2015, 39 (2): 868- 876.
doi: 10.1039/C4NJ01256A
60 王亮, 谢水波, 杨金辉, 等. 氧化石墨烯/二氧化硅复合材料对铀(Ⅵ)的吸附性能[J]. 中国有色金属学报, 2016, 26 (6): 1264- 1271.
60 WANG L , XIE S B , YANG J H , et al. Adsorption properties of graphene oxide/silica composite materials for uranium (Ⅵ)[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (6): 1264- 1271.
61 SCHIERZ A , ZÄNKER H . Aqueous suspensions of carbon nanotubes:surface oxidation, colloidal stability and uranium sorption[J]. Environmental Pollution, 2009, 157 (4): 1088- 1094.
doi: 10.1016/j.envpol.2008.09.045
62 SONG J , KONG H , JANG J . Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles[J]. Journal of Colloid&Interface Science, 2011, 359 (2): 505- 511.
63 TAHIR S S , RAUF N . Thermodynamic studies of Ni (Ⅱ) adsorption onto bentonite from aqueous solution[J]. Journal of Chemical Thermodynamics, 2003, 35, 2003- 2009.
doi: 10.1016/S0021-9614(03)00153-8
64 HU R , SHAO D D , WANG X K . Graphene oxide/polypyrrole composites for highly selective enrichment of U (Ⅵ) from aqueous solutions[J]. Polymer Chemistry, 2014, 5 (21): 6207- 6215.
doi: 10.1039/C4PY00743C
65 YANG S T , ZONG P F , REN X M , et al. Rapid and highly efficient preconcentration of Eu (Ⅲ) by core-shell structured Fe3O4@humic acid magnetic nanoparticles[J]. Acs Applied Materials&Interfaces, 2012, 4 (12): 6891- 6900.
66 SUN Y B , YANG S B , CHEN Y , et al. Adsorption and desorption of U (Ⅵ) on functionalized graphene oxides:a combined experimental and theoretical study[J]. Environ Science Technology, 2015, 49, 4255- 4262.
doi: 10.1021/es505590j
67 SHENG G D , ALSAEDI A , SHAMMAKH W , et al. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation[J]. Carbon, 2016, 99, 123- 130.
doi: 10.1016/j.carbon.2015.12.013
68 SHENG G D , HU J , LI H , et al. Enhanced sequestration of Cr (Ⅵ) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study[J]. Chemosphere, 2016, 148, 227- 232.
doi: 10.1016/j.chemosphere.2016.01.035
69 HAN R P , ZOU W H , WANG Y , et al. Removal of uranium (Ⅵ) from aqueous solutions by manganese oxide coated zeolite:discussion of adsorption isotherms and pH effect[J]. Journal of Environment Radioactivity, 2007, 93, 127- 143.
doi: 10.1016/j.jenvrad.2006.12.003
70 WANG H , YUAN X Z , WU Y , et al. Adsorption characteristics and behaviors of graphene oxide for Zn (Ⅱ) removal from aqueous solution[J]. Applied Surface Science, 2013, 279, 432- 440.
doi: 10.1016/j.apsusc.2013.04.133
71 张伟强, 马建国, 刘淑娟, 等. 改性石墨烯海绵材料对铀的吸附研究[J]. 东华理工大学学报(自然科学版), 2014, 37 (2): 230- 235.
71 ZHANG W Q , MA J G , LIU S J , et al. Uranium adsorption on functionalized graphene sponge[J]. Journal of East China Institute of Technology (Natural Science), 2014, 37 (2): 230- 235.
72 孙兆勇. 石墨烯与复合物的制备以及铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
72 SUN Z Y. Synthesis and uranium adsorption characterization of graphene and graphene-based materials[D]. Harbin: Harbin Engineering University, 2013.
73 武里鹏, 毛燕妮, 刘淑娟, 等. 磁性石墨烯对铀的吸附性能研究[J]. 江西化工, 2015, (2): 99- 103.
73 WU L P , MAO Y N , LIU S J , et al. Study on adsorption of uranium of magnetic graphene[J]. Jiang Xi Hua Gong, 2015, (2): 99- 103.
74 XIAO C L , WU Q Y , SHI W Q , et al. Quantum chemistry study of U (Ⅵ), Np (Ⅴ) and Pu (Ⅳ, Ⅵ) complexes with preorganized tetradentate phenanthrolineamide ligands[J]. Inorganic Chemistry, 2014, 53, 10846- 10853.
doi: 10.1021/ic500816z
75 LAN J H , SHI W Q , CHAI Z F , et al. Recent advances in computational modeling and simulations on the An (Ⅲ)/Ln (Ⅲ) separation process[J]. Coordination Chemistry Reviews, 2012, 256, 1406- 1417.
doi: 10.1016/j.ccr.2012.04.002
76 WU Q Y , LAN J H , SHI W Q , et al. Understanding the bonding nature of uranyl ion and functionalized graphene:a theoretical study[J]. Journal of Physical Chemistry A, 2014, 118, 2149- 2158.
doi: 10.1021/jp500924a
77 WANG C Z , LAN J H , SHI W Q , et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups[J]. Inorganic Chemistry, 2014, 53, 9466- 9476.
doi: 10.1021/ic500202g
78 YANG S T , ZONG P F , SHENG G D , et al. New insight into Eu (Ⅲ) sorption mechanism at alumina/water interface by batch technique and EXAFS analysis[J]. Radiochimica Acta, 2014, 102 (1/2): 143- 153.
79 SUN Y B , DING C C , WANG X K , et al. Simultaneous adsorption and reduction of U (Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280, 399- 408.
doi: 10.1016/j.jhazmat.2014.08.023
80 SUN Y B , SHAO D D , CHEN C L , et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline[J]. Environmental Science&Technology, 2013, 47, 9904- 9910.
81 WU Q Y , LAN J H , WANG C Z , et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide:Scalar-relativistic DFT investigations[J]. The Journal of Physical Chemistry A, 2014, 118 (44): 10273- 10280.
doi: 10.1021/jp5069945
82 王祥学, 李洁, 于淑君, 等. 放射性核素在天然黏土和人工纳米材料上的吸附机理研究[J]. 核化学与放射化学, 2015, 37 (5): 329- 340.
doi: 10.7538/hhx.2015.37.05.0329
82 WANG X X , LI J , YU S J , et al. Sorption mechanism of radionuclides on clay minerals and manmade nanomaterials[J]. Journal of Nuclear&Radiochemistry, 2015, 37 (5): 329- 340.
doi: 10.7538/hhx.2015.37.05.0329
83 杜毅, 王建, 王宏青, 等. 人工纳米材料吸附放射性核素的机理研究[J]. 农业环境科学学报, 2016, 35 (10): 1837- 1847.
doi: 10.11654/jaes.2016-0493
83 DU Y , WANG J , WANG H Q , et al. Research on sorption mechanism of radionuclides by manufactured nanomaterials[J]. Journal of Agro-Environment Science, 2016, 35 (10): 1837- 1847.
doi: 10.11654/jaes.2016-0493
84 WU Q Y , WANG C Z , LAN J H , et al. Theoretical investigation on multiple bonds in terminal actinide nitride complexes[J]. Inorganic Chemistry, 2014, 53 (18): 9607- 9614.
doi: 10.1021/ic501006p
85 LIU S , ZENG T H , HOFMANN M , et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:membrane and oxidative stress[J]. ACS Nano, 2011, 5 (9): 6971- 6980.
doi: 10.1021/nn202451x
86 AKHAVAN O , GHADERI E . Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4 (10): 5731- 5736.
doi: 10.1021/nn101390x
87 DUCH M C , BUDINGER G R S , LIANG Y T , et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung[J]. Nano Letters, 2011, 11 (12): 5201- 5207.
doi: 10.1021/nl202515a
88 吕小慧, 陈白杨, 朱小山. 氧化石墨烯的水环境行为及其生物毒性[J]. 中国环境科学, 2016, 36 (11): 3348- 3359.
doi: 10.3969/j.issn.1000-6923.2016.11.019
88 LÜ X H , CHEN B Y , ZHU X S . Fate and toxicity of graphene oxide in aquatic environment[J]. China Environmental Science, 2016, 36 (11): 3348- 3359.
doi: 10.3969/j.issn.1000-6923.2016.11.019
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 孔国强, 安振河, 魏化震, 李莹, 邵蒙, 于秋兵, 纪校君, 李居影, 王康. 碳纤维丝束结构对碳纤维/酚醛复合材料烧蚀性能的影响[J]. 材料工程, 2022, 50(9): 113-119.
[4] 米玉洁, 宋明明, 张存瑞, 张贵恩, 王月祥, 常志敏. 羰基铁室温硫化硅橡胶复合材料的吸波性能[J]. 材料工程, 2022, 50(9): 120-126.
[5] 邢宇, 张代军, 王成博, 倪洪江, 李军, 陈祥宝. PEEK复合材料用碳纤维上浆剂研究进展[J]. 材料工程, 2022, 50(8): 70-81.
[6] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[7] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[8] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[9] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[10] 倪洪江, 邢宇, 戴霄翔, 李军, 张代军, 陈祥宝. 航空发动机用聚酰亚胺树脂基复合材料固化工艺及热稳定性能[J]. 材料工程, 2022, 50(7): 102-109.
[11] 吕双祺, 黄佳, 孙燕涛, 付尧明, 杨晓光, 石多奇. 莫来石纤维增强SiO2气凝胶复合材料压缩回弹性能实验与建模研究[J]. 材料工程, 2022, 50(7): 119-127.
[12] 杨智勇, 臧家俊, 方丹琳, 李翔, 李志强, 李卫京. 城轨列车制动盘SiCp/A356复合材料热疲劳裂纹扩展机理[J]. 材料工程, 2022, 50(7): 165-175.
[13] 彭斌意, 刘洋, 郑晓董, 李治国, 李国平, 胡建波, 王永刚. 激光选区熔化颗粒增强钛基复合材料的抗压性能[J]. 材料工程, 2022, 50(6): 36-48.
[14] 李军, 刘燕峰, 倪洪江, 张代军, 陈祥宝. 航空发动机用树脂基复合材料应用进展与发展趋势[J]. 材料工程, 2022, 50(6): 49-60.
[15] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn