1 Institute of Nuclear Science and Technology, University of South China, Hengyang 421001, Hunan, China 2 Key Discipline Laboratory for National Defence for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, Hunan, China 3 Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang 421001, Hunan, China
Graphene oxide has potential application prospects in the field of environmental protection as the adsorption material of uranium-containing wastewater due to its many advantages such as its large specific surface area, high mechanical strength and good chemical stability, which has attracted much attention. The research situation and progress of uranium adsorption of graphene-oxide composite materials were summarized in this paper. The principle about effect of solution pH value, temperature, ionic strength, contact time and adsorbent dosage on uranium adsorption by graphene oxide composite materials was analyzed. The study on internal relationship between the microstructure and micromorphology of graphene oxide composite materials and uranium adsorption capacity by the methods of surface complexation model, spectral analysis and theoretical calculation was elaborated. Meanwhile, the challenges in the study of the adsorption of uranium by graphene oxide composite materials were studied, the research on the interaction mechanism of uranium and graphene oxide materials and their development and application in environmental protection were prospected.
WANG J S , ZOU X L , JIA L , et al. Adsorption performance of low-strength U (Ⅵ) on α-ketoglutaric acid modified chitosan[J]. Atomic Energy Science and Technology, 2015, 49 (2): 255- 262.
doi: 10.7538/yzk.2015.49.02.0255
SHI D F , TANG Z P , HUANG H Y , et al. Adsorption characteristic and mechanism of Uranium (Ⅵ) on magnetism graphene oxide/β-cyclodextrin composite[J]. Atomic Energy Science and Technology, 2016, 50 (9): 1556- 1564.
doi: 10.7538/yzk.2016.50.09.1556
SHANG Z R . Impact of depleted uranium on environmental and human health[J]. Radiation Protection, 2005, (1): 56- 61.
4
周书葵, 娄涛, 庞朝晖. 放射性废水处理技术[M]. 北京: 化学工业出版社, 2012: 7.
4
ZHOU S K , LOU T , PANG C H . Radioactive waste water treatment technology[M]. Beijing: Chemical Industry Press, 2012: 7.
5
WANG J S , BAO Z L , CHEN S G , et al. Removal of uranium from aqueous solution by chitosan and ferrous ions[J]. International Conference on Nuclear Engineering, 2010, 133 (8): 735- 740.
6
MELISA S , GUSTAVO A , ROSA M . Uranium uptake by montmorillonite-biomass complexes[J]. Industrial&Engineering Chemistry Research, 2013, 52 (6): 2273- 2279.
7
YUAN L Y , LIU Y L , SHI W Q , et al. High performance of phosphonate-functionalized mesoporous silica for U (Ⅵ) adsorption from aqueous solution[J]. Dalton Trans, 2011, 40, 7446- 7453.
doi: 10.1039/c1dt10085h
8
ZHANG X F , JIAO C S , WANG J , et al. Removal of uranium (Ⅵ) from aqueous solutions by magnetic Schiff base:kinetic and thermodynamic investigation[J]. Chemical Engineering Journal, 2012, 198, 412- 419.
9
LI X Y , ZHANG M , LIU Y B , et al. Removal of U (Ⅵ) in aqueous solution by nanoscale zero-valent iron (nZVI)[J]. Exposure and Health, 2013, 5 (1): 31- 40.
doi: 10.1007/s12403-013-0084-4
10
ZHAO D L , WANG X B , YANG S T , et al. Impact of water quality parameters on the sorption of U (Ⅵ) onto hematite[J]. Journal of Environmental Radioactivity, 2012, 103 (1): 20- 29.
doi: 10.1016/j.jenvrad.2011.08.010
11
BELLONI F , KUTAHYALI C , RONDINELLA V V , et al. Can carbon nanotubes play a role in the field of nuclear waste management?[J]. Environment Science&Technology, 2009, 43, 1250- 1255.
12
LIU H J , XIE S B , XIA L S , et al. Study on adsorptive property of bentonite for cesium[J]. Environment Earth Science, 2016, 75 (2): 148.
doi: 10.1007/s12665-015-4941-2
13
SCHINDLER M , LEGRAND C A , JR M F H . Alteration, adsorption and nucleation processes on clay-water interfaces:mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale[J]. Geochimica Et Cosmochimica Acta, 2015, 153, 15- 36.
doi: 10.1016/j.gca.2014.12.020
14
VILLA-ALFAGEME M , HURTADO S , MRABET S E , et al. Uranium immobilization by FEBEX bentonite and steel barriers in hydrothermal conditions[J]. Chemical Engineering Journal, 2015, 269, 279- 287.
doi: 10.1016/j.cej.2015.01.134
15
GUNATHILAKE C , GORKA J , DAI S , et al. Amidoxime-modified mesoporous silica for uranium adsorption under seawater conditions[J]. Journal of Materials Chemistry A, 2015, 3 (21): 11650- 11659.
doi: 10.1039/C5TA02863A
16
LIU H J , JING P F , LIU , et al. Synthesis of β-cyclodextrin functionalized silica gel and its application for adsorption of uranium (Ⅵ)[J]. Journal of Radioanalytical&Nuclear Chemistry, 2016, 310 (1): 1- 8.
17
ZHOU L , ZOU H , WANG Y , et al. Adsorption of uranium (Ⅵ) from aqueous solution using phosphonic acid-functionalized silica magnetic microspheres[J]. Journal of Radioanalytical&Nuclear Chemistry, 2016, 310 (3): 1- 9.
18
HUMELNICU D , BLEGESCU C , GANJU D . Removal of uranium (Ⅵ) and thorium (Ⅳ) ions from aqueous solutions by functionalized silica:kinetic and thermodynamic studies[J]. Journal of Radioanalytical&Nuclear Chemistry, 2014, 299 (3): 1183- 1190.
19
BARKAT M , NIBOU D , AMOKRANE S , et al. Uranium (Ⅵ) adsorption on synthesized 4A and P1 zeolites:equilibrium, kinetic, and thermodynamic studies[J]. Comptes Rendus Chimie, 2015, 18 (3): 261- 269.
doi: 10.1016/j.crci.2014.09.011
20
SHARIFIPOUR F , HOJATI S , LANDI A , et al. Kinetics and thermodynamics of lead adsorption from aqueous solutions onto iranian sepiolite and zeolite[J]. International Journal of Environmental Research, 2015, 9 (3): 1001- 1010.
21
SHAKUR H R , SARAEE K R E , ABDI M R , et al. Selective removal of uranium ions from contaminated waters using modified-X nanozeolite[J]. Applied Radiation&Isotopes, 2016, 118, 43- 55.
22
BAKATULA E N , MOLAUDZI R , NEKHUNGUNI P , et al. The removal of arsenic and uranium from aqueous solutions by sorption onto iron oxide-coated zeolite[J]. Water Air&Soil Pollution, 2017, 228 (1): 5.
23
VAN N R . Moving towards a graphene world[J]. Nature, 2006, 442 (7100): 228- 229.
doi: 10.1038/442228a
24
SZABO T , BERKESI O , FORGO P , et al. Evolution of surface functional groups in a series of progressively oxidized graphite oxides[J]. Chemistry of Materials, 2006, 18 (11): 2740- 2749.
doi: 10.1021/cm060258+
25
ROMANCHUK A Y , SLESAREV A S , KALMYKOV S N , et al. Graphene oxide for effective radionuclide removal[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2321- 2327.
doi: 10.1039/c2cp44593j
WANG Y, GU Z X, WANG Z S, et al. Controllable preparation of graphene oxide nanoribbons and their adsorption to uranium[C]//The Thirteenth National Conference on nuclear chemistry and radiation chemistry. Dali: Chinese Chemical Society, Chinese Nuclear Society, 2014: 38.
27
JIN Z X , WANG X X , WANG X K , et al. Sequestration of 4-nonylphenol and bisphenol-A on magnetic reduced graphene oxides:a combined experimental and theoretical studies[J]. Environment Science&Technology, 2015, 49, 9168- 9175.
28
WANG X X , YU S J , JIN J , et al. Application of graphene oxides and graphene oxide-based nanomaterials in radionuclide removal from aqueous solutions[J]. Science Bulletin, 2016, 61 (20): 1583- 1593.
doi: 10.1007/s11434-016-1168-x
29
WANG X X , YANG S B , WANG X K , et al. Different interaction mechanisms of Eu (Ⅲ) and 243Am (Ⅲ) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation[J]. Environment Science&Technology, 2015, 49, 11721- 11728.
30
CHEN Y T , ZHANG W , WANG X K , et al. Understanding the adsorption mechanism of Ni (Ⅱ) on graphene oxides by batch experiments and density functional theory studies[J]. Science China Chemistry, 2016, 59, 412- 419.
doi: 10.1007/s11426-015-5549-9
31
YU S J , WANG X X , WANG X K , et al. Sorption of radionuclides from aqueous systems onto graphene oxide-based materials:a review[J]. Inorganic Chemistry Frontiers, 2015, 46 (32): 593- 612.
CAO M L , ZHANG H X , ZHANG C , et al. Graphene-containing composite materials for heavy metal ions adsorption[J]. Journal of Functional Materials, 2016, 47 (8): 08001- 08007.
LYU S H , ZHU L L , LI Y , et al. Current situation and progress of graphene oxide composites[J]. Journal of Materials Engineering, 2016, 44 (12): 107- 117.
doi: 10.11868/j.issn.1001-4381.2016.12.017
34
WANG C L , LI Y , LIU C L . Sorption of uranium from aqueous solutions with graphene oxide[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304 (3): 1017- 1025.
doi: 10.1007/s10967-014-3855-x
35
LI Z J , CHEN F , YUAN L Y , et al. Uranium (Ⅵ) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210, 539- 546.
doi: 10.1016/j.cej.2012.09.030
36
ZHAO Y G , LI J X , ZHANG S W , et al. Efficient enrichment of uranium (Ⅵ) on amidoximated magnetite/graphene oxide composites[J]. RSC Advances, 2013, 3, 18952- 18959.
doi: 10.1039/c3ra42236d
37
CHENG H X , ZENG K F , YU J T . Adsorption of uranium from aqueous solution by graphene oxide nanosheets supported on sepiolite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298 (1): 599- 603.
doi: 10.1007/s10967-012-2406-6
38
GU Z X , WANG Y , TANG J , et al. The removal of uranium (Ⅵ) from aqueous solution by graphene oxide-carbon nanotubes hybrid aerogels[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (3): 1835- 1842.
39
SHAO D D , LI J X , WANG X K . Poly (amidoxime)-reduced graphene oxide composites as adsorbents for the enrichment of uranium from seawater[J]. Science China Chemistry, 2014, 57 (11): 1449- 1458.
doi: 10.1007/s11426-014-5195-7
40
SONG W C , SHAO D D , LU S S , et al. Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry, 2014, 57 (9): 1291- 1299.
doi: 10.1007/s11426-014-5119-6
41
LIU S J , LI S , ZhANG H X , et al. Removal of uranium (Ⅵ) from aqueous solution using graphene oxide and its amine-functionalized composite[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 309 (2): 607- 614.
42
WANG Z S , WANG Y , LIAO J L , et al. Improving the adsorption ability of graphene sheets to uranium through chemical oxidation, electrolysis and ball-milling[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308 (3): 1095- 1102.
doi: 10.1007/s10967-015-4598-z
43
LIU S J , MA J G , ZHANG W Q , et al. Three-dimensional graphene oxide/phytic acid composite for uranium (Ⅵ) sorption[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306 (2): 507- 514.
doi: 10.1007/s10967-015-4162-x
44
SHAO L , ZHONG J R , REN Y M , et al. Perhydroxy-CB[6] decorated graphene oxide composite for uranium (Ⅵ) removal[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 311 (1): 627- 635.
doi: 10.1007/s10967-016-5067-z
45
ZHANG Z B , QIU Y F , DAI Y , et al. Synthesis and application of sulfonated graphene oxide for the adsorption of uranium (Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310 (2): 547- 557.
doi: 10.1007/s10967-016-4813-6
46
WANG Y , WANG Z S , GU Z X , et al. Uranium (Ⅵ) sorption on graphene oxide nanoribbons derived from unzipping of multiwalled carbon nanotubes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304 (3): 1329- 1337.
doi: 10.1007/s10967-015-3981-0
47
WANG X X , CHEN Z S , WANG X K . Graphene oxides for simultaneous highly efficient removal of trace level radionuclides from aqueous solutions[J]. Science China Chemistry, 2015, 58 (11): 1766- 1773.
doi: 10.1007/s11426-015-5435-5
48
ZHAO D L , CHEN L L , SUN M , et al. Preparation and application of magnetic graphene oxide composite for the highly efficient immobilization of U (Ⅵ) from aqueous solutions[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306 (1): 221- 229.
doi: 10.1007/s10967-015-4064-y
49
TAO X Q , YAO X B , LU S S , et al. Efficient removal of radionuclide U (Ⅵ) from aqueous solutions by using graphene oxide nanosheets[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303 (1): 245- 253.
doi: 10.1007/s10967-014-3429-y
50
LIU X , WANG X X , LI J X , et al. Ozonated graphene oxides as high efficient sorbents for Sr (Ⅱ) and U (Ⅵ) removal from aqueous solutions[J]. Science China Chemistry, 2016, 59 (7): 869- 877.
doi: 10.1007/s11426-016-5594-z
51
ZHAO G X , WEN T , YANG X , et al. Preconcentration of U (Ⅵ) ions on few-layered graphene oxide nanosheets from aqueous solutions[J]. Dalton Transactions, 2012, 41 (20): 6182- 6188.
doi: 10.1039/c2dt00054g
52
ZONG P F , WANG S F , ZHAO Y L , et al. Synthesis and application of magnetic graphene/iron oxides composite for the removal of U (Ⅵ) from aqueous solutions[J]. Chemical Engineering Journal, 2013, 220, 45- 52.
doi: 10.1016/j.cej.2013.01.038
53
CHEN S P , HONG J X , YANG H X , et al. Adsorption of uranium (Ⅵ) from aqueous solution using a novel graphene oxide-activated carbon felt composite[J]. Journal of Environmental Radioactivity, 2013, 126 (4): 253- 258.
54
DING C C , CHENG W C , SUN Y B , et al. Determination of chemical affinity of graphene oxide nanosheets with radionuclides investigated by macroscopic, spectroscopic and modeling techniques[J]. Dalton Transactions, 2014, 43, 3888- 3896.
doi: 10.1039/C3DT52881B
55
SHAO L , WANG X F , REN Y M , et al. Facile fabrication of magnetic cucurbitt[6] uril/graphene oxide composite and application for uranium removal[J]. Chemical Engineering Journal, 2016, 286, 311- 319.
doi: 10.1016/j.cej.2015.10.062
56
SHAO D D , HOU G S , LI J X , et al. PANI/GO as a super adsorbent for the selective adsorption of uranium (Ⅵ)[J]. Chemical Engineering Journal, 2014, 255, 604- 612.
doi: 10.1016/j.cej.2014.06.063
57
SONG W C , WANG X X , WANG Q , et al. Plasma-induced grafting of polyacrylamide on graphene oxide nanosheets for simultaneous removal of radionuclides[J]. Physical Chemistry Chemical Physics, 2015, 17, 398- 406.
doi: 10.1039/C4CP04289A
58
TAN L C , LIU Q , SONG D L , et al. Uranium extraction using a magnetic CoFe2O4-graphene nanocomposite:kinetics and thermodynamics studies[J]. New Journal of Chemistry, 2015, 39, 2832- 2838.
doi: 10.1039/C4NJ01981D
59
TAN L C , WANG J , LIU Q , et al. The synthesis of a manganese dioxide-iron oxide-graphene magnetic nanocomposite for enhanced uranium (Ⅵ) removal[J]. New Journal of Chemistry, 2015, 39 (2): 868- 876.
doi: 10.1039/C4NJ01256A
WANG L , XIE S B , YANG J H , et al. Adsorption properties of graphene oxide/silica composite materials for uranium (Ⅵ)[J]. The Chinese Journal of Nonferrous Metals, 2016, 26 (6): 1264- 1271.
61
SCHIERZ A , ZÄNKER H . Aqueous suspensions of carbon nanotubes:surface oxidation, colloidal stability and uranium sorption[J]. Environmental Pollution, 2009, 157 (4): 1088- 1094.
doi: 10.1016/j.envpol.2008.09.045
62
SONG J , KONG H , JANG J . Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles[J]. Journal of Colloid&Interface Science, 2011, 359 (2): 505- 511.
63
TAHIR S S , RAUF N . Thermodynamic studies of Ni (Ⅱ) adsorption onto bentonite from aqueous solution[J]. Journal of Chemical Thermodynamics, 2003, 35, 2003- 2009.
doi: 10.1016/S0021-9614(03)00153-8
64
HU R , SHAO D D , WANG X K . Graphene oxide/polypyrrole composites for highly selective enrichment of U (Ⅵ) from aqueous solutions[J]. Polymer Chemistry, 2014, 5 (21): 6207- 6215.
doi: 10.1039/C4PY00743C
65
YANG S T , ZONG P F , REN X M , et al. Rapid and highly efficient preconcentration of Eu (Ⅲ) by core-shell structured Fe3O4@humic acid magnetic nanoparticles[J]. Acs Applied Materials&Interfaces, 2012, 4 (12): 6891- 6900.
66
SUN Y B , YANG S B , CHEN Y , et al. Adsorption and desorption of U (Ⅵ) on functionalized graphene oxides:a combined experimental and theoretical study[J]. Environ Science Technology, 2015, 49, 4255- 4262.
doi: 10.1021/es505590j
67
SHENG G D , ALSAEDI A , SHAMMAKH W , et al. Enhanced sequestration of selenite in water by nanoscale zero valent iron immobilization on carbon nanotubes by a combined batch, XPS and XAFS investigation[J]. Carbon, 2016, 99, 123- 130.
doi: 10.1016/j.carbon.2015.12.013
68
SHENG G D , HU J , LI H , et al. Enhanced sequestration of Cr (Ⅵ) by nanoscale zero-valent iron supported on layered double hydroxide by batch and XAFS study[J]. Chemosphere, 2016, 148, 227- 232.
doi: 10.1016/j.chemosphere.2016.01.035
69
HAN R P , ZOU W H , WANG Y , et al. Removal of uranium (Ⅵ) from aqueous solutions by manganese oxide coated zeolite:discussion of adsorption isotherms and pH effect[J]. Journal of Environment Radioactivity, 2007, 93, 127- 143.
doi: 10.1016/j.jenvrad.2006.12.003
70
WANG H , YUAN X Z , WU Y , et al. Adsorption characteristics and behaviors of graphene oxide for Zn (Ⅱ) removal from aqueous solution[J]. Applied Surface Science, 2013, 279, 432- 440.
doi: 10.1016/j.apsusc.2013.04.133
ZHANG W Q , MA J G , LIU S J , et al. Uranium adsorption on functionalized graphene sponge[J]. Journal of East China Institute of Technology (Natural Science), 2014, 37 (2): 230- 235.
72
孙兆勇. 石墨烯与复合物的制备以及铀吸附性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
72
SUN Z Y. Synthesis and uranium adsorption characterization of graphene and graphene-based materials[D]. Harbin: Harbin Engineering University, 2013.
WU L P , MAO Y N , LIU S J , et al. Study on adsorption of uranium of magnetic graphene[J]. Jiang Xi Hua Gong, 2015, (2): 99- 103.
74
XIAO C L , WU Q Y , SHI W Q , et al. Quantum chemistry study of U (Ⅵ), Np (Ⅴ) and Pu (Ⅳ, Ⅵ) complexes with preorganized tetradentate phenanthrolineamide ligands[J]. Inorganic Chemistry, 2014, 53, 10846- 10853.
doi: 10.1021/ic500816z
75
LAN J H , SHI W Q , CHAI Z F , et al. Recent advances in computational modeling and simulations on the An (Ⅲ)/Ln (Ⅲ) separation process[J]. Coordination Chemistry Reviews, 2012, 256, 1406- 1417.
doi: 10.1016/j.ccr.2012.04.002
76
WU Q Y , LAN J H , SHI W Q , et al. Understanding the bonding nature of uranyl ion and functionalized graphene:a theoretical study[J]. Journal of Physical Chemistry A, 2014, 118, 2149- 2158.
doi: 10.1021/jp500924a
77
WANG C Z , LAN J H , SHI W Q , et al. Theoretical insights on the interaction of uranium with amidoxime and carboxyl groups[J]. Inorganic Chemistry, 2014, 53, 9466- 9476.
doi: 10.1021/ic500202g
78
YANG S T , ZONG P F , SHENG G D , et al. New insight into Eu (Ⅲ) sorption mechanism at alumina/water interface by batch technique and EXAFS analysis[J]. Radiochimica Acta, 2014, 102 (1/2): 143- 153.
79
SUN Y B , DING C C , WANG X K , et al. Simultaneous adsorption and reduction of U (Ⅵ) on reduced graphene oxide-supported nanoscale zerovalent iron[J]. Journal of Hazardous Materials, 2014, 280, 399- 408.
doi: 10.1016/j.jhazmat.2014.08.023
80
SUN Y B , SHAO D D , CHEN C L , et al. Highly efficient enrichment of radionuclides on graphene oxide supported polyaniline[J]. Environmental Science&Technology, 2013, 47, 9904- 9910.
81
WU Q Y , LAN J H , WANG C Z , et al. Understanding the interactions of neptunium and plutonium ions with graphene oxide:Scalar-relativistic DFT investigations[J]. The Journal of Physical Chemistry A, 2014, 118 (44): 10273- 10280.
doi: 10.1021/jp5069945
WANG X X , LI J , YU S J , et al. Sorption mechanism of radionuclides on clay minerals and manmade nanomaterials[J]. Journal of Nuclear&Radiochemistry, 2015, 37 (5): 329- 340.
doi: 10.7538/hhx.2015.37.05.0329
DU Y , WANG J , WANG H Q , et al. Research on sorption mechanism of radionuclides by manufactured nanomaterials[J]. Journal of Agro-Environment Science, 2016, 35 (10): 1837- 1847.
doi: 10.11654/jaes.2016-0493
84
WU Q Y , WANG C Z , LAN J H , et al. Theoretical investigation on multiple bonds in terminal actinide nitride complexes[J]. Inorganic Chemistry, 2014, 53 (18): 9607- 9614.
doi: 10.1021/ic501006p
85
LIU S , ZENG T H , HOFMANN M , et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:membrane and oxidative stress[J]. ACS Nano, 2011, 5 (9): 6971- 6980.
doi: 10.1021/nn202451x
86
AKHAVAN O , GHADERI E . Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4 (10): 5731- 5736.
doi: 10.1021/nn101390x
87
DUCH M C , BUDINGER G R S , LIANG Y T , et al. Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung[J]. Nano Letters, 2011, 11 (12): 5201- 5207.
doi: 10.1021/nl202515a
LÜ X H , CHEN B Y , ZHU X S . Fate and toxicity of graphene oxide in aquatic environment[J]. China Environmental Science, 2016, 36 (11): 3348- 3359.
doi: 10.3969/j.issn.1000-6923.2016.11.019