Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 120-126    DOI: 10.11868/j.issn.1001-4381.2017.000464
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚苯醚纳米纤维锂电隔膜的制备
李可峰1,2, 尹晓燕2
1. 山东淄博实验中学, 山东 淄博 255000;
2. 山东理工大学 化工学院, 山东 淄博 255000
Polyphenylene Oxide-based Nanofiber Separator Prepared by Electrospinning Method for Lithium-ion Batteries
LI Ke-feng1,2, YIN Xiao-yan2
1. Shandong Zibo Experimental High School, Zibo 255000, Shandong, China;
2. College of Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
全文: PDF(3591 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了改善锂离子电池的高温安全性和充放电性能,以聚苯醚树脂为成膜材料,采用静电纺丝技术制备了纳米纤维锂电隔膜,对隔膜的形貌、结构、电解液亲和性和耐高温性进行了系统测试,并将该纳米纤维膜装配到电池中进行充放电性能测试。结果显示:聚苯醚隔膜的纳米纤维直径约为260nm,纤维交错形成均匀的孔道(平均孔径约500nm),其孔隙率达到74%以上,为聚烯烃隔膜的2倍左右;聚苯醚树脂的电解液亲和性和高孔隙率强化了隔膜的电解液吸收和保持能力,其吸液率约为310%;在150℃,60min的热处理条件下,该隔膜的尺寸收缩率几乎为零。电池性能测试表明,聚苯醚基纳米纤维膜显示出更优的放电倍率性能和循环性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李可峰
尹晓燕
关键词 电池纳米纤维膜孔隙率热稳定性电化学性能    
Abstract:To improve the high temperature safety and charge-discharge performance of lithium-ion batteries, a novel polyphenylene oxide-based nanofiber separator was facilely prepared by electrospinning method and investigated in lithium-ion batteries. Some investigations including morphology, microstructure, electrolyte wettability, thermal resistance and cell performance were carried out. The results demonstrate that the polyphenylene oxide-based separator with fiber diameter of 260 nm exhibits uniform porous structure (with average pore size of 500nm). The porosity is up to 74%, which is about one time higher than that of polyolefin separators. This separator also shows excellent electrolyte uptake (310%) and thermal stability at 150℃ for 60min.Cell performance tests show that the nanofiber separator exhibits better discharge performance and cycle performance compared with the commercial PE separator.
Key wordsbattery    nanofiber separator    porosity    thermal resistance    electrochemical performance
收稿日期: 2017-04-17      出版日期: 2018-10-17
中图分类号:  TM912  
  O646  
通讯作者: 尹晓燕(1976-),女,副教授,博士,研究方向为化学电源用新型隔膜的设计和制备,联系地址:山东省淄博市山东理工大学化工学院(255000),E-mail:2146741135@qq.com     E-mail: 2146741135@qq.com
引用本文:   
李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
LI Ke-feng, YIN Xiao-yan. Polyphenylene Oxide-based Nanofiber Separator Prepared by Electrospinning Method for Lithium-ion Batteries. Journal of Materials Engineering, 2018, 46(10): 120-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000464      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/120
[1] 王洪建, 程健, 任永强, 等. 高安全性锂离子电池隔膜制造工艺研究进展[J]. 电源技术, 2016, 12:2466-2468. WANG H J, CHENG J, REN Y Q, et al. Research progress of high-security lithium-ion battery separator manufacturing process[J]. Chinese Journal of Power Source, 2016, 12:2466-2468.
[2] 张洪涛, 尚华, 顾波, 等. 沸石基锂离子电池隔膜的制备与性能[J]. 材料工程, 2017, 45(12):83-87. ZHANG H T, SHANG H, GU B, et al. Preparation and performances of zeolite-based separator for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(12):83-87.
[3] 沈衡, 赵宁, 徐坚. 锂离子电池隔膜专利分析与发展趋势[J]. 高分子学报, 2015(11):1266-1270. SHEN H, ZHAO N, XU J. Patent analysis of separator for li-ion batteries and its development tendency[J]. Acta Polymerica Sinica, 2015(11):1266-1270.
[4] ARORA P, ZHANG Z M. Battery separators[J]. Chem Rev, 2004, 104(10):4419-4462.
[5] 董鹏, 张英杰, 刘嘉铭, 等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11):49-57. DONG P, ZHANG Y J, LIU J M, et al. Fabrication and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 coated with nano FePO4 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(11):49-57.
[6] 李梅, 李志强. 静电纺丝机理最新研究进展[J]. 材料导报, 2014, 28(24):30-35. LI M, LI Z Q. Recent development in study on mechanism of electrospinning[J]. Materials Review, 2014, 28(24):30-35.
[7] CHERUVALLY G, KIM J K, CHOI J W, et al. Electrospun polymer membrane activated with room temperature ionic liquid:novel polymer electrolytes for lithium batteries[J]. J Power Sources, 2007, 172:863-869.
[8] MIAO Y E, ZHU G N, HOU H Q, et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion Batteries[J]. J Power Sources, 2013, 226:82-86.
[9] THACKERAY M M, WOLVERTON C, ISAACS C D. Electrical energy storage for transportation approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1):7854-7863.
[10] CHEN W J, SHI L Y, WANG Z Y, et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high performance lithium-ion battery[J]. Carbohydrate Polymers, 2016, 147:517-524.
[11] LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(12):3857-3886.
[12] TEVI T, YAGHOUBI H, WANG J, et al. Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors[J]. J Power Sources, 2013, 241:589-596.
[13] WOO J J, NAM S H, SEO S J, et al. A flame retarding separator with improved thermal stability for safe lithium-ion batteries[J]. Electrochemistry Communications, 2013, 35:68-71.
[14] YANILMAZ M, LU Y, ZHU J D, et al. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries[J]. J Power Sources, 2016, 313:205-212.
[15] ZHU Y, YIN M, LIU H S, et al. Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes[J]. Composites Part B:Engineering, 2017, 112:31-37.
[1] 王楠, 齐新, 彭思侃, 陈翔, 王晨, 戴圣龙, 燕绍九. Mn2O3/Fe2O3/少层石墨烯/硫锂硫电池正极材料的制备及其电化学性能[J]. 材料工程, 2020, 48(8): 110-118.
[2] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[3] 齐新, 王晨, 南文争, 洪起虎, 彭思侃, 燕绍九. 人造固态电解质界面在锂金属负极保护中的应用研究[J]. 材料工程, 2020, 48(6): 50-61.
[4] 刘媛媛, 李舒婷, 彭军, 安胜利. Gd2O3掺杂量对Ce1-xGdxO2-δ电解质导电性能的影响[J]. 材料工程, 2020, 48(6): 118-124.
[5] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[6] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[7] 李伟, 李争显, 刘林涛, 耿娟娟, 相远帆, 王凯凯. 多孔金属流场双极板研究进展[J]. 材料工程, 2020, 48(5): 31-40.
[8] 靳宇, 李家峰, 何南, 文陈, 崔庆新, 白晶莹. 纳米多孔Pd-Cu/Pd-Ag催化剂的制备及其电催化性能[J]. 材料工程, 2020, 48(5): 62-67.
[9] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[10] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[11] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 碳纳米材料构建高性能锂离子和锂硫电池研究进展[J]. 材料工程, 2020, 48(4): 25-35.
[12] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[13] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[14] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[15] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn