Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 120-126    DOI: 10.11868/j.issn.1001-4381.2017.000464
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
聚苯醚纳米纤维锂电隔膜的制备
李可峰1,2, 尹晓燕2
1. 山东淄博实验中学, 山东 淄博 255000;
2. 山东理工大学 化工学院, 山东 淄博 255000
Polyphenylene Oxide-based Nanofiber Separator Prepared by Electrospinning Method for Lithium-ion Batteries
LI Ke-feng1,2, YIN Xiao-yan2
1. Shandong Zibo Experimental High School, Zibo 255000, Shandong, China;
2. College of Chemical Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
全文: PDF(3591 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 为了改善锂离子电池的高温安全性和充放电性能,以聚苯醚树脂为成膜材料,采用静电纺丝技术制备了纳米纤维锂电隔膜,对隔膜的形貌、结构、电解液亲和性和耐高温性进行了系统测试,并将该纳米纤维膜装配到电池中进行充放电性能测试。结果显示:聚苯醚隔膜的纳米纤维直径约为260nm,纤维交错形成均匀的孔道(平均孔径约500nm),其孔隙率达到74%以上,为聚烯烃隔膜的2倍左右;聚苯醚树脂的电解液亲和性和高孔隙率强化了隔膜的电解液吸收和保持能力,其吸液率约为310%;在150℃,60min的热处理条件下,该隔膜的尺寸收缩率几乎为零。电池性能测试表明,聚苯醚基纳米纤维膜显示出更优的放电倍率性能和循环性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李可峰
尹晓燕
关键词 电池纳米纤维膜孔隙率热稳定性电化学性能    
Abstract:To improve the high temperature safety and charge-discharge performance of lithium-ion batteries, a novel polyphenylene oxide-based nanofiber separator was facilely prepared by electrospinning method and investigated in lithium-ion batteries. Some investigations including morphology, microstructure, electrolyte wettability, thermal resistance and cell performance were carried out. The results demonstrate that the polyphenylene oxide-based separator with fiber diameter of 260 nm exhibits uniform porous structure (with average pore size of 500nm). The porosity is up to 74%, which is about one time higher than that of polyolefin separators. This separator also shows excellent electrolyte uptake (310%) and thermal stability at 150℃ for 60min.Cell performance tests show that the nanofiber separator exhibits better discharge performance and cycle performance compared with the commercial PE separator.
Key wordsbattery    nanofiber separator    porosity    thermal resistance    electrochemical performance
收稿日期: 2017-04-17      出版日期: 2018-10-17
中图分类号:  TM912  
  O646  
通讯作者: 尹晓燕(1976-),女,副教授,博士,研究方向为化学电源用新型隔膜的设计和制备,联系地址:山东省淄博市山东理工大学化工学院(255000),E-mail:2146741135@qq.com     E-mail: 2146741135@qq.com
引用本文:   
李可峰, 尹晓燕. 聚苯醚纳米纤维锂电隔膜的制备[J]. 材料工程, 2018, 46(10): 120-126.
LI Ke-feng, YIN Xiao-yan. Polyphenylene Oxide-based Nanofiber Separator Prepared by Electrospinning Method for Lithium-ion Batteries. Journal of Materials Engineering, 2018, 46(10): 120-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000464      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/120
[1] 王洪建, 程健, 任永强, 等. 高安全性锂离子电池隔膜制造工艺研究进展[J]. 电源技术, 2016, 12:2466-2468. WANG H J, CHENG J, REN Y Q, et al. Research progress of high-security lithium-ion battery separator manufacturing process[J]. Chinese Journal of Power Source, 2016, 12:2466-2468.
[2] 张洪涛, 尚华, 顾波, 等. 沸石基锂离子电池隔膜的制备与性能[J]. 材料工程, 2017, 45(12):83-87. ZHANG H T, SHANG H, GU B, et al. Preparation and performances of zeolite-based separator for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(12):83-87.
[3] 沈衡, 赵宁, 徐坚. 锂离子电池隔膜专利分析与发展趋势[J]. 高分子学报, 2015(11):1266-1270. SHEN H, ZHAO N, XU J. Patent analysis of separator for li-ion batteries and its development tendency[J]. Acta Polymerica Sinica, 2015(11):1266-1270.
[4] ARORA P, ZHANG Z M. Battery separators[J]. Chem Rev, 2004, 104(10):4419-4462.
[5] 董鹏, 张英杰, 刘嘉铭, 等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程, 2017, 45(11):49-57. DONG P, ZHANG Y J, LIU J M, et al. Fabrication and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 coated with nano FePO4 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(11):49-57.
[6] 李梅, 李志强. 静电纺丝机理最新研究进展[J]. 材料导报, 2014, 28(24):30-35. LI M, LI Z Q. Recent development in study on mechanism of electrospinning[J]. Materials Review, 2014, 28(24):30-35.
[7] CHERUVALLY G, KIM J K, CHOI J W, et al. Electrospun polymer membrane activated with room temperature ionic liquid:novel polymer electrolytes for lithium batteries[J]. J Power Sources, 2007, 172:863-869.
[8] MIAO Y E, ZHU G N, HOU H Q, et al. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion Batteries[J]. J Power Sources, 2013, 226:82-86.
[9] THACKERAY M M, WOLVERTON C, ISAACS C D. Electrical energy storage for transportation approaching the limits of, and going beyond, lithium-ion batteries[J]. Energy & Environmental Science, 2012, 5(1):7854-7863.
[10] CHEN W J, SHI L Y, WANG Z Y, et al. Porous cellulose diacetate-SiO2 composite coating on polyethylene separator for high performance lithium-ion battery[J]. Carbohydrate Polymers, 2016, 147:517-524.
[11] LEE H, YANILMAZ M, TOPRAKCI O, et al. A review of recent developments in membrane separators for rechargeable lithium-ion batteries[J]. Energy & Environmental Science, 2014, 7(12):3857-3886.
[12] TEVI T, YAGHOUBI H, WANG J, et al. Application of poly (p-phenylene oxide) as blocking layer to reduce self-discharge in supercapacitors[J]. J Power Sources, 2013, 241:589-596.
[13] WOO J J, NAM S H, SEO S J, et al. A flame retarding separator with improved thermal stability for safe lithium-ion batteries[J]. Electrochemistry Communications, 2013, 35:68-71.
[14] YANILMAZ M, LU Y, ZHU J D, et al. Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries[J]. J Power Sources, 2016, 313:205-212.
[15] ZHU Y, YIN M, LIU H S, et al. Modification and characterization of electrospun poly (vinylidene fluoride)/poly (acrylonitrile) blend separator membranes[J]. Composites Part B:Engineering, 2017, 112:31-37.
[1] 应承展, 吕秋娟, 刘朝辉, 毕松, 侯根良, 汤进. 碳材料在钙钛矿太阳能电池中的应用[J]. 材料工程, 2019, 47(6): 1-10.
[2] 卢璐, 吴磊, 史继诚, 徐洪峰, 丛涛泉. PEMFC用抗溺水性功能化Pt/C催化剂的制备及表征[J]. 材料工程, 2019, 47(6): 63-69.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[5] 胡安俊, 龙剑平, 舒朝著. 设计稳定和可逆的锂-空气电池阴极催化剂的研究进展[J]. 材料工程, 2019, 47(3): 30-41.
[6] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[7] 秦振海, 黄昊, 吴爱民, 陈明珠, 杨影影, 姚曼. 立方相碳化钛在锂空电池中的电化学行为[J]. 材料工程, 2019, 47(2): 34-41.
[8] 王松林, 徐向棋, 王东生. 微管SOFC复合支撑体NiO/La0.7Ca0.3CrO3-δ的相转化纺丝法制备与性能[J]. 材料工程, 2019, 47(2): 42-48.
[9] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[10] 云亮, 刘峥, 李海莹, 王浩, 钟寒阳. 原位合成壳聚糖复合炭材料及其在铅碳电池中的应用[J]. 材料工程, 2018, 46(8): 57-63.
[11] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[12] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[13] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
[14] 朱诗尧, 李平, 叶黎城, 郑俊生, 高源. 基于Pt/CNTs催化剂的燃料电池Pt/Buckypaper催化层的制备与表征[J]. 材料工程, 2018, 46(6): 27-35.
[15] 张晴, 黄其煜. 碳材料在染料敏化太阳能电池和钙钛矿太阳能电池对电极中的应用进展[J]. 材料工程, 2018, 46(5): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn