Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 73-79    DOI: 10.11868/j.issn.1001-4381.2017.000477
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ni含量对钒钛磁铁矿原位合成制备铁基摩擦材料的影响
税玥, 冯可芹, 岳慧芳, 张燕燕, 严子迪
四川大学 制造科学与工程学院, 成都 610065
Effect of Ni Content on Iron-based Friction Material Prepared by In-situ Synthesized from Vanadium-bearing Titanomagnetite Concentrates
SHUI Yue, FENG Ke-qin, YUE Hui-fang, ZHANG Yan-yan, YAN Zi-di
School of Manufacturing Science and Engineering, Sichuan University, Chengdu 610065, China
全文: PDF(3545 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以钒钛磁铁矿为主要原料,利用选择性碳热原位还原技术真空烧结制备铁基摩擦材料,研究添加合金元素Ni(1%~4%,质量分数,下同)对铁基摩擦材料的微观组织、力学性能及摩擦磨损行为的影响。结果表明:烧结试样由铁基体、润滑相石墨和硬质相(主要为TiC)3种组元构成,其基体组织主要是层片状的珠光体,具有较高强度和硬度。与未添加Ni的试样相比,添加Ni对铁基摩擦材料的组织和性能有不同程度的促进作用。添加少量的Ni(1%~2%)能有效促进材料烧结致密化,材料中的孔隙细小且数量较少,硬质相和石墨均匀分布,硬度和摩擦磨损性能均随着Ni含量的增加大幅度提高。但当Ni含量超过2%时,烧结试样中出现较大的孔洞并且石墨与硬质相均出现偏聚,材料硬度逐渐降低,磨损率和摩擦因数均随Ni含量的增加而有所增大。综合而言,当Ni含量为2%时材料的组织结构和性能均达到最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
税玥
冯可芹
岳慧芳
张燕燕
严子迪
关键词 铁基摩擦材料原位合成钒钛磁铁矿Ni    
Abstract:A method for preparing iron-based friction material directly from the vanadium-bearing titanomagnetite concentrates by means of in-situ carbothermic reaction and sintering was presented. Effect of Ni content (1%-4%, mass fraction, the same below)on microstructure, mechanical properties and wear performance of iron-based friction material was investigated. The results show that the sintered sample consists of iron matrix, graphite lubricating phases and hard particles (mainly TiC). The matrix is predominantly composed of laminated pearlite with higher strength and hardness than those of ferrite. Compared with the sintered sample without Ni, the microstructure and properties of iron-based friction material are improved in varying degrees with different Ni contents. Low Ni content (1%-2%) promotes sintering process, which exhibits the decreasing amount of pores and uniform distribution of lubricating graphite phases and hard particles. Besides, the hardness and wear performance are improved significantly with the increase of Ni content. However, when Ni content exceeds 2%, not only the amount of pores increases, but also graphite phases and hard particles segregate in the microstructure, which result in decreasing hardness and poor wear performance of the material. To sum up, the microstructure and properties are the best when the Ni content is 2%.
Key wordsiron-based friction material    in-situ reduction    vanadium-bearing titanomagnetite concentrate    Ni
收稿日期: 2017-04-20      出版日期: 2018-09-19
中图分类号:  TB33  
通讯作者: 冯可芹(1970-),女,教授,博士生导师,从事粉末冶金材料制备研究,联系地址:四川省成都市一环路南一段24号四川大学制造科学与工程学院(610065),E-mail:kqfeng@scu.edu.cn     E-mail: kqfeng@scu.edu.cn
引用本文:   
税玥, 冯可芹, 岳慧芳, 张燕燕, 严子迪. Ni含量对钒钛磁铁矿原位合成制备铁基摩擦材料的影响[J]. 材料工程, 2018, 46(9): 73-79.
SHUI Yue, FENG Ke-qin, YUE Hui-fang, ZHANG Yan-yan, YAN Zi-di. Effect of Ni Content on Iron-based Friction Material Prepared by In-situ Synthesized from Vanadium-bearing Titanomagnetite Concentrates. Journal of Materials Engineering, 2018, 46(9): 73-79.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000477      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/73
[1] 汤铁. 攀枝花钒钛磁铁矿综合利用研究及未来发展方向[J]. 攀枝花科技与信息,2016,41(3):1-7. TANG T. Research on comprehensive utilization and future development of vanadium-bearing titanomagnetite in Panzhihua[J]. Panzhihua Keji Yu Xinxi,2016,41(3):1-7.
[2] 邹正光,傅正义,袁润章. 自蔓延高温合成TiC复合添加剂增强铁基粉末冶金材料[J]. 中国有色金属学报,2001,11(3):408-411. ZOU Z G, FU Z Y, YUAN R Z. Iron-based powder metallurgical material reinforced by SHS TiC composite powders[J].The Chinese Journal of Nonferrous Metals,2001,11(3):408-411.
[3] 刘胜明,汤爱涛,陈敏,等. 钛铁矿原位反应合成Al2O3-TiC颗粒增强铁基复合材料[J]. 材料工程,2015,43(1):18-23. LIU S M, TANG A T, CHEN M,et al. Al2O3-TiC reinforced ferrous-matrix composite by in-situ synthesis from ilmenite[J]. Journal of Materials Engineering, 2015,43(1):18-23.
[4] KHOSHHAL R,SOLTANIEH M,BOUTORABI M A. Formation mechanism and synthesis of Fe-TiC/Al2O3 composite by ilmenite,aluminum and graphite[J]. International Journal of Refractory Metals and Hard Materials, 2014,45:53-57.
[5] WELHAM N J,WILLIS P E. Formation of TiN/TiC-Fe composites from ilmenite (FeTiO3) concentrate[J]. Metallurgical and Materials Transactions B,1998,29(5):1077-1083.
[6] WELHAM N J,WILLIAMS J S. Carbothermic reduction of ilmenite (FeTiO3) and rutile (TiO2)[J]. Metallurgical and Materials Transactions B,1999,30(6):1075-1081.
[7] ZHANG G M,FENG K Q,LI Y. Effects of sintering process on preparing iron-based friction material directly from vanadium-bearing titanomagnetite concentrates[J]. Materials & Design,2015,86:616-620.
[8] 岳慧芳,冯可芹,李莹,等. 石墨对钒钛铁精矿原位制备铁基摩擦材料的影响[J]. 材料热处理学报,2015, 36(10):16-21. YUE H F,FENG K Q,LI Y,et al. Effect of graphite content on Fe-based friction material prepared by in-situ carbothermic reduction and synthesis from vanadium and titanium iron concentrate[J]. Transactions of Materials and Heat Treatment,2015,36(10):16-21.
[9] ZHANG G M,FENG K Q. Synthesis of iron-based friction material by in situ reactive sintering from vanadium-bearing titanomagnetite[J]. Materials and Manufacturing Processes,2016,31(2):198-205.
[10] MEI Z,YAN Y W,CUI K. Effect of matrix composition on the microstructure of in situ synthesized TiC particulate reinforced iron-based composites[J]. Materials Letters, 2003,57(21):3175-3181.
[11] 梁连杰. 电场激活压力辅助燃烧合成TiB2-TiC-Ni金属陶瓷及其与Ti的连接性[D]. 太原:太原理工大学,2011. LIANG L J. Preparation of TiB2-TiC-Ni cermet by field-activated and pressure-assisted combustion synthesis and weldability with Ti[D]. Taiyuan:Taiyuan University of Technology,2011.
[12] 赵宇,陈莉,姜永春. 粉末冶金烧结铁基材料的耐磨性[J].铁合金,2006(1):24-27. ZHAO Y,CHEN L,JIANG Y C. Powder metallurgy sintered iron-base material's wear-ability[J]. Ferro-alloys,2006(1):24-27.
[13] 杜心康,石宗利,叶明惠,等. 高速列车铁基烧结闸片材料的摩擦磨损性能研究[J]. 摩擦学学报,2001, 21(4):256-259. DU X K,SHI Z L,YE M H,et al. Friction and wear behavior of Fe-based sintered lining material for highway train[J]. Tribology,2001,21(4):256-259.
[14] 王秋林, 朱金波, 徐如涛,等. 高能超声辅助原位合成Al-Cr/Al复合材料[J]. 航空材料学报, 2016, 36(2):21-27. WANG Q L,ZHU J B, XU R T,et al. In-situ synthesizing Al-Cr/Al composites assisted by high-energy ultrasound[J]. Journal of Aeronautical Materials, 2016, 36(2):21-27.
[15] 林文松, 李元元, 陈维平. 镍元素对铁基合金烧结收缩的影响[J]. 机械工程材料,2003,27(10):11-13. LIN W S,LI Y Y,CHEN W P. Shrinkage effect in sintering of Fe-Ni alloys[J]. Materials for Mechanical Engineering, 2003,27(10):11-13.
[16] HWANG K S,HSIAO M Y. Mechanical properties of iron-nickel metal injection moulded (MIM) parts[J]. Metal Powder Report,1992,47(10):55.
[17] 尹利广,尹延国,张国涛,等. Ni、P元素对于铁基粉末冶金材料力学性能的影响[J]. 粉末冶金技术,2014,32(4):254-258. YIN L G,YIN Y G,ZHANG G T,et al. The influence of Ni and P on the mechanical properties of iron-based powder metallurgy material[J]. Powder Metallurgy Technology,2014,32(4):254-258.
[18] 姜峰. 合金元素对粉末冶金低合金钢性能和组织的影响研究[D]. 长沙:中南大学,2004. JIANG F. Effect of alloying elements on microstructure and properties of low alloy steel[D]. Changsha:Central South University,2004.
[19] 左爱军,薛烽,孙扬善,等. 原位合成TiC颗粒弥散强化2A50铝基耐磨材料[J]. 热加工工艺,2009,38(6):91-94. ZUO A J,XUE F,SUN Y S,et al. Fabrication of TiC particles dispersion-reinforced aluminum matrix composite by in-situ synthesis technique[J]. Hot Working Technology,2009,38(6):91-94.
[1] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郭琪琪, 费敬银, 张嫚, 韩锡正, 赵利娜. Fei氏方波对Ni-P合金镀层组成及其非晶化程度的调控作用[J]. 材料工程, 2020, 48(6): 163-169.
[4] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[5] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[6] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[7] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[8] 张佳琪, 王敏杰, 刘建业, 牛留辉, 王金海. 扫描策略对激光选区熔化成型18Ni300马氏体时效钢打印质量和性能的影响[J]. 材料工程, 2020, 48(10): 105-113.
[9] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[10] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[11] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[12] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[13] 周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
[14] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[15] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn