Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 48-53    DOI: 10.11868/j.issn.1001-4381.2017.000494
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
功能化氧化石墨烯改性双马树脂及其复合材料
李闯, 李伟, 王明宇, 王柏臣, 冯博文, 李勃翰, 李强
沈阳航空航天大学 材料科学与工程学院, 沈阳 110136
Modification of Bismaleimide Resin and Its Composites by Using Functionalized Graphene Oxide
LI Chuang, LI Wei, WANG Ming-yu, WANG Bai-chen, FENG Bo-wen, LI Bo-han, LI Qiang
School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
全文: PDF(23075 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用马来酸酐对氧化石墨烯(GO)进行表面功能化修饰,将制备的功能化GO对双马来酰亚胺(BMI)树脂及其碳纤维复合材料进行改性,并对其结构和性能进行分析表征。结果表明:马来酸酐成功地键接到GO的表面,功能化GO的引入使得BMI树脂的拉伸强度、弹性模量、弯曲强度、冲击强度和玻璃化转变温度等得以明显提高,冲击断口形貌显示材料由改性前的脆性断裂转变为韧性断裂;碳纤维复合材料的界面黏结性能也得到明显加强,层间剪切强度(ILSS)由改性前的84.0MPa提高到104.6MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李闯
李伟
王明宇
王柏臣
冯博文
李勃翰
李强
关键词 双马来酰亚胺碳纤维功能化氧化石墨烯复合材料改性    
Abstract:Maleic anhydride was used to functionalize the graphene oxide (GO). The prepared functionalized GO was used to modify the bismaleimide (BMI) resin and the carbon fiber/BMI composites. The structure and properties of the composites were characterized. The results indicate that the maleic anhydride molecules are successfully grafted onto the GO surfaces. Due to the introduction of functionalized GO, the tensile strength, elastic modulus, blending strength, impact strength and glass transition temperature of the BMI resin were substantially improved. The impact fracture morphologies show that brittle fracture is transformed into ductile fracture after modification; moreover, the interfacial adhesions of carbon fiber/BMI composites were also enhanced obviously. The ILSS of composites increased from 84.0MPa to 104.6MPa after modification.
Key wordsbismaleimide    carbon fiber    functionalized graphene oxide    composites    modification
收稿日期: 2017-04-21      出版日期: 2018-12-18
中图分类号:  TB332  
通讯作者: 李伟(1970-),男,教授,博士,研究方向为树脂基复合材料的界面改性,联系地址:沈阳市道义南大街37号沈阳航空航天大学材料科学与工程学院009信箱(110136),E-mail:liwei@sau.edu.cn     E-mail: liwei@sau.edu.cn
引用本文:   
李闯, 李伟, 王明宇, 王柏臣, 冯博文, 李勃翰, 李强. 功能化氧化石墨烯改性双马树脂及其复合材料[J]. 材料工程, 2018, 46(12): 48-53.
LI Chuang, LI Wei, WANG Ming-yu, WANG Bai-chen, FENG Bo-wen, LI Bo-han, LI Qiang. Modification of Bismaleimide Resin and Its Composites by Using Functionalized Graphene Oxide. Journal of Materials Engineering, 2018, 46(12): 48-53.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000494      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/48
[1] LIU L, JIA C Y, HE J M, et al. Interfacial characterization, control and modification of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2015, 121(1):56-72.
[2] LI W, YAO S Y, MA K M, et al. Effect of plasma modification on the mechanical properties of carbon fiber/phenolphthalein polyaryletherketone composites[J]. Polymer Composites, 2013, 34(3):368-375.
[3] WU H, DRZAL L T. Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite[J]. Materials Chemistry and Physics, 2014, 146(1):26-36.
[4] PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-a study of the literature-part I:formation of residual stresses[J]. Composites:Part A, 2006, 37(11):1847-1857.
[5] FUKUNAGA A, UEDA S. Anodic surface oxidation for pitch-based carbon fibers and the interfacial bond strengths in epoxy matrices[J]. Composites Science and Technology, 2000, 60(2):249-254.
[6] LIU J, TIAN Y, CHEN Y, et al. Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in (NH4HCO3)/(NH4)2C2O4·H2O aqueous compound solution[J]. Applied Surface Science, 2010, 256(21):6199-6204.
[7] BOUDOU J P, PAREDES J I, CUESTA A, et al. Oxygen plasma modification of pitch-based isotropic carbon fibres[J]. Carbon, 2003, 41(1):41-56.
[8] DEAN D, OBORE A M, RICHMOND S, et al. Multiscale fiber-reinforced nanocomposites:synthesis, processing and properties[J]. Composites Science and Technology, 2006, 66(13):2135-2142.
[9] ASHORI A, RAHMANI H, BAHRAMI R. Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites[J]. Polymer Testing, 2015, 48(1):82-88.
[10] CHEN L, JIN H, XU Z W, et al. A design of gradient interphase reinforced by silanized graphene oxide and its effect on carbon fiber/epoxy interface[J]. Materials chemistry and physics, 2014, 145(1/2):186-196.
[11] ZHANG X Q, FAN X Y, YAN C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4(3):1543-1552.
[12] SINGH V, JOUNG D, ZHAI L, et al. Graphene based materials:past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-1271.
[13] 吕生华, 朱琳琳, 李莹, 等. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程,2016, 44(12):107-117. LYU S H, ZHU L L, LI Y, et al. Current situation and progress of graphene oxide composites[J]. Journal of Materials Engineering, 2016, 44(12):107-117.
[14] 马文石, 周俊文, 林晓丹. 乙醇胺功能化石墨烯的制备与表征[J]. 化学学报, 2011, 69(12):1463-1468. MA W S, ZHOU J W, LIN X D. Preparation and characterization of functionalized graphene with ethanolamine[J]. Acta Chimica Sinica, 2011, 69(12):1463-1468.
[15] WAN Y J, TANG L C, GONG L X, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon, 2014, 69(2):467-480.
[16] 杨程, 陈宇滨, 田俊鹏, 等. 功能化石墨烯的制备及应用研究进展[J]. 航空材料学报, 2016, 36(3):40-56. YANG C, CHEN Y B, TIAN J P, et al. Development in preparation and application of graphene functionalization[J]. Jounal of Aeronautical Materials, 2016, 36(3):40-56.
[17] BAO C, GUO Y, SONG L, et al. In situ preparation of functionalized graphene oxide/epoxy nanocomposites with effective reinforcements[J]. Journal of Materials Chemistry, 2011, 21(35):13290-13298.
[18] LIN R, LU W, LIN C. Cure reactions in the blend of cyanate ester with maleimide[J]. Polymer, 200445(13):4423-4435.
[19] LI Y, GU A, LIANG G, et al. Microcapsule-modified bismaleimide (BMI) resins[J]. Composites Science and Technology, 2008, 68(9):2107-2113.
[20] LIN Q, ZHENG R, TIAN P. Preparation and characterization of BMI resin/graphite oxide nanocomposites[J]. Polymer Testing, 2010,29:537-543.
[21] ROZENBERG B A, DZHAVADYAN E A, MORGAN R, et al. High-performance bismaleimide matrices:cure kinetics and mechanism[J]. Polymers for Advanced Technologies, 2002, 13(10):837-844.
[22] HUMMERS JR W S, RICHARD E O. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339.
[23] LI W, ZHOU B Q, WANG M Y, et al. Silane functionalization of graphene oxide and its use as a reinforcement in bismaleimide composites[J]. Journal of Materials Science, 2015, 50(16):5402-5410.
[24] 胡合贵, 戚国荣, 李新华, 等. 马来酸酐与十八醇酯化反应研究[J]. 高校化学工程学报, 1999(5):466-469. HU H G, QI G R, LI X H, et al. Study on esterification of maleic anhydride and octadecyl alcohol[J]. Journal of Chemical Engineering of Chinese Universities, 1999(5):466-469.
[25] 黄桥,孙红娟,杨勇辉. 氧化石墨的谱学表征及分析[J]. 无机化学学报, 2011, 27(9):1721-1726. HUANG Q, SUN H J, YANG Y H. Spectroscopy characterization and analysis of graphite oxide[J]. Chinese Journal 0f Inorganic Chemistry, 2011, 27(9):1721-1726.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[14] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[15] 杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn