1 Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China 2 Jiangxi Power Transmission & Transformation Construction Company, Nanchang 330200, China
Two types of ultrathin-flaky δ-MnO2 electrode materials (denoted as δ-MnO2-A and δ-MnO2-B) were synthesized through the reduction of potassium permanganate with manganese acetate and ethanol separately.The crystalline structure, chemical component, microstructure and pore size distribution of these nano-materials were determined by XRD, XPS, SEM/TEM and BET analysis.The electrochemical test demonstrates two δ-MnO2 electrode materials own similar specific capacitance and rate capability.Comparing to δ-MnO2-A, however, electrode material δ-MnO2-B contains a higher potassium and manganese vacancy content, and the lamellar structure of δ-MnO2-B is more legible and stable, therefore it displays a much more superior cycling stability.In 0.5mol/L Na2SO4 electrolyte, the specific capacitance of δ-MnO2 reaches 227F·g-1(1mV·s-1) and the capacitance retention rate is achieved 87.6% after 5000 cycles at 100mV·s-1.
LEE H Y , GOODENOUGH J B . Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144 (1): 220- 223.
doi: 10.1006/jssc.1998.8128
2
LEE H Y , MANIVANNAN V , GOODENOUGH J B . Electrochemical capacitors with KCl electrolyte[J]. Comptes Rendus de l Académie des Sciences-Series IIC-Chemistry, 1999, 2 (11): 565- 577.
3
WANG J G , KANG F , WEI B . Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74, 51- 124.
doi: 10.1016/j.pmatsci.2015.04.003
4
CHEN X , YAN S , WANG N , et al. Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes[J]. RSC Advances, 2017, (88): 55734- 55740.
5
POSR J E . Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method[J]. American Mineralogist, 1990, 75 (5/6): 477- 489.
6
DEVARAJ S , MUNICHANDRAIAH N . Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C, 2008, 112 (11): 4406- 4417.
doi: 10.1021/jp7108785
7
JOTHIRAMALINGAM R , VISWANATHAN B , VARADARAJAN T K . Synthesis and structural characterization of copper incorporated manganese oxide OMS-2 materials synthesized via potassium birnessite[J]. Materials Chemistry & Physics, 2006, 100 (2/3): 257- 261.
8
FENG Q , LIU L , YANAGISAWA K . Effects of synthesis parameters on the formation of birnessite-type manganese oxides[J]. Journal of Materials Science Letters, 2000, 19 (17): 1567- 1570.
doi: 10.1023/A:1006733308073
9
SHEN X F , DING Y S , LIU J , et al. Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials[J]. Cheminform, 2005, 36 (7): 805- 809.
10
ZHANG X , YU P , ZHANG H , et al. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2, nanosheets for supercapacitor applications[J]. Electrochimica Acta, 2013, 89, 523- 529.
doi: 10.1016/j.electacta.2012.11.089
11
LIU L , YAO L , TAN W , et al. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials[J]. Journal of Colloid & Interface Science, 2016, 482, 183- 192.
12
ZHAO S , LIU T , HOU D , et al. Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications[J]. Applied Surface Science, 2015, 356, 259- 265.
doi: 10.1016/j.apsusc.2015.08.037
13
HUANG M , MI R , LIU H , et al. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes[J]. Journal of Power Sources, 2014, 269 (4): 760- 767.
14
ZHAO Y , MENG Y , WU H , et al. In situ anchoring uniform MnO2 nanosheets on three-dimensional macroporous graphene thin-films for supercapacitor electrodes[J]. RSC Advances, 2015, (110): 90307- 90312.
15
WANG G , ZHANG L , ZHANG J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2011, 41 (2): 797- 828.
16
WEI W , CUI X , CHEN W , et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews, 2011, 40 (3): 1697- 1721.
doi: 10.1039/C0CS00127A
17
BROUSSE T , TOUPIN M , DUGAS R , et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2006, 153 (12): 2171- 2180.
doi: 10.1149/1.2352197
18
TAGUCHI A , INOUE S , AKAMARU S , et al. Phase transition and electrochemical capacitance of mechanically treated manganese oxides[J]. Journal of Alloys & Compounds, 2006, 414 (1): 137- 141.
19
CHANG J K , LEE M T , TSAI W T . In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J]. Journal of Power Sources, 2007, 166 (2): 590- 594.
doi: 10.1016/j.jpowsour.2007.01.036
20
BIESINGER M C , PAYNE B P , GROSVENOR A P , et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257 (7): 2717- 2730.
doi: 10.1016/j.apsusc.2010.10.051
21
ABOU K S . Hydrated layered manganese dioxide:part Ⅰ.synthesis and characterization of some hydrated layered manganese dioxides from α-NaMnO2[J]. Solid State Ionics, 2002, 150 (3): 407- 415.
22
PENG S , YAN S , WANG N , et al. Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries[J]. RSC Advances, 2018, (23): 12701- 12707.
23
LIU X M , ZHANG X G , FU S Y . Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Materials Research Bulletin, 2006, 41 (3): 620- 627.
doi: 10.1016/j.materresbull.2005.09.006
YU M , LI X J , MA Y X , et al. Progress in research on graphene-based composite supercapacitor materials[J]. Journal of Materials Engineering, 2016, 44 (5): 101- 111.
25
MATHIEU T , THIERRY B , DANIEL B . Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials, 2004, 16 (16): 3184- 3190.
doi: 10.1021/cm049649j
26
SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7 (11): 845- 854.
doi: 10.1038/nmat2297