Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (2): 49-55    DOI: 10.11868/j.issn.1001-4381.2017.000499
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
δ-MnO2纳米片的制备、表征及电化学性能
陈翔1, 燕绍九1,*(), 王楠1, 彭思侃1, 王晨1, 吴广明2, 戴圣龙1
1 中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
2 江西省送变电建设公司, 南昌 330200
Fabrication, characterization and electrochemical behavior of δ-MnO2 nanoflakes
Xiang CHEN1, Shao-jiu YAN1,*(), Nan WANG1, Si-kan PENG1, Chen WANG1, Guang-ming WU2, Sheng-long DAI1
1 Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
2 Jiangxi Power Transmission & Transformation Construction Company, Nanchang 330200, China
全文: PDF(3419 KB)   HTML ( 18 )  
输出: BibTeX | EndNote (RIS)      
摘要 

分别采用醋酸锰和乙醇还原高锰酸钾,制备2种超薄δ-MnO2纳米片电极材料(δ-MnO2-A与δ-MnO2-B)。通过XRD、XPS、SEM/TEM、比表面积分析等手段研究材料的晶体结构、化学成分、微观形貌和孔径分布特征。电化学性能测试表明:2种材料具有相似的比电容和倍率性能。但是相比于δ-MnO2-A,电极材料δ-MnO2-B具有更高的钾含量和锰空位含量,片层状结构更加清晰、稳定,因而充放电循环稳定性更好。在0.5mol/L Na2SO4电解液中,1mV·s-1扫描速率下δ-MnO2电极材料的比电容可达227F·g-1。100mV·s-1扫描速率、5000次循环后,电容保持率为87.6%。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈翔
燕绍九
王楠
彭思侃
王晨
吴广明
戴圣龙
关键词 二氧化锰层状纳米片超级电容器储能电极材料    
Abstract

Two types of ultrathin-flaky δ-MnO2 electrode materials (denoted as δ-MnO2-A and δ-MnO2-B) were synthesized through the reduction of potassium permanganate with manganese acetate and ethanol separately.The crystalline structure, chemical component, microstructure and pore size distribution of these nano-materials were determined by XRD, XPS, SEM/TEM and BET analysis.The electrochemical test demonstrates two δ-MnO2 electrode materials own similar specific capacitance and rate capability.Comparing to δ-MnO2-A, however, electrode material δ-MnO2-B contains a higher potassium and manganese vacancy content, and the lamellar structure of δ-MnO2-B is more legible and stable, therefore it displays a much more superior cycling stability.In 0.5mol/L Na2SO4 electrolyte, the specific capacitance of δ-MnO2 reaches 227F·g-1(1mV·s-1) and the capacitance retention rate is achieved 87.6% after 5000 cycles at 100mV·s-1.

Key wordsmanganese dioxide    lamellar nanoflake    supercapacitor    energy storage electrode material
收稿日期: 2017-04-24      出版日期: 2019-02-21
中图分类号:  TQ152  
通讯作者: 燕绍九     E-mail: shaojiuyan@126.com
作者简介: 燕绍九(1980-), 男, 博士, 高级工程师, 主要从事磁性材料、石墨烯增强金属、储能材料及石墨烯应用方面的研究工作, 联系地址:北京81信箱72分箱(100095), E-mail:shaojiuyan@126.com
引用本文:   
陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
Xiang CHEN, Shao-jiu YAN, Nan WANG, Si-kan PENG, Chen WANG, Guang-ming WU, Sheng-long DAI. Fabrication, characterization and electrochemical behavior of δ-MnO2 nanoflakes. Journal of Materials Engineering, 2019, 47(2): 49-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000499      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/49
Sample Chemical formula Average Mn valence Mass fraction/%
Mn K H2O
δ-MnO2-A K0.122Mn0.0703+Mn0.9174+Mn0.013vO2·0.47H2O 3.88 51.62 4.51 8.56
δ-MnO2-B K0.247Mn0.1243+Mn0.8454+Mn0.031vO2·0.50H2O 3.75 48.44 8.72 8.62
Table 1  纳米δ-MnO2电极材料的化学组成
Fig.1  纳米δ-MnO2电极材料的Mn2p XPS谱图
(a)δ-MnO2-A;(b)δ-MnO2-B
Fig.2  纳米δ-MnO2电极材料的XRD谱图
Fig.3  纳米δ-MnO2电极材料的微观形貌
(a)δ-MnO2-A;(b)δ-MnO2-B;(1)SEM图;(2)TEM图;(3)高分辨形貌
Fig.4  纳米δ-MnO2电极材料的氮气等温吸脱附曲线与孔径分布图
(a)δ-MnO2-A;(b)δ-MnO2-B
Fig.5  纳米δ-MnO2电极材料电化学性能
(a)50mV·s-1扫描速率下的CV曲线;(b)比电容与扫描速率的关系;(c)1A·g-1电流密度下的GCD曲线;(d)比电容与电流密度的关系;(e)Nyquist谱图;(f)100mV·s-1扫描速率下循环衰减曲线
1 LEE H Y , GOODENOUGH J B . Supercapacitor behavior with KCl electrolyte[J]. Journal of Solid State Chemistry, 1999, 144 (1): 220- 223.
doi: 10.1006/jssc.1998.8128
2 LEE H Y , MANIVANNAN V , GOODENOUGH J B . Electrochemical capacitors with KCl electrolyte[J]. Comptes Rendus de l Académie des Sciences-Series IIC-Chemistry, 1999, 2 (11): 565- 577.
3 WANG J G , KANG F , WEI B . Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74, 51- 124.
doi: 10.1016/j.pmatsci.2015.04.003
4 CHEN X , YAN S , WANG N , et al. Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes[J]. RSC Advances, 2017, (88): 55734- 55740.
5 POSR J E . Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method[J]. American Mineralogist, 1990, 75 (5/6): 477- 489.
6 DEVARAJ S , MUNICHANDRAIAH N . Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C, 2008, 112 (11): 4406- 4417.
doi: 10.1021/jp7108785
7 JOTHIRAMALINGAM R , VISWANATHAN B , VARADARAJAN T K . Synthesis and structural characterization of copper incorporated manganese oxide OMS-2 materials synthesized via potassium birnessite[J]. Materials Chemistry & Physics, 2006, 100 (2/3): 257- 261.
8 FENG Q , LIU L , YANAGISAWA K . Effects of synthesis parameters on the formation of birnessite-type manganese oxides[J]. Journal of Materials Science Letters, 2000, 19 (17): 1567- 1570.
doi: 10.1023/A:1006733308073
9 SHEN X F , DING Y S , LIU J , et al. Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials[J]. Cheminform, 2005, 36 (7): 805- 809.
10 ZHANG X , YU P , ZHANG H , et al. Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2, nanosheets for supercapacitor applications[J]. Electrochimica Acta, 2013, 89, 523- 529.
doi: 10.1016/j.electacta.2012.11.089
11 LIU L , YAO L , TAN W , et al. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials[J]. Journal of Colloid & Interface Science, 2016, 482, 183- 192.
12 ZHAO S , LIU T , HOU D , et al. Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications[J]. Applied Surface Science, 2015, 356, 259- 265.
doi: 10.1016/j.apsusc.2015.08.037
13 HUANG M , MI R , LIU H , et al. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes[J]. Journal of Power Sources, 2014, 269 (4): 760- 767.
14 ZHAO Y , MENG Y , WU H , et al. In situ anchoring uniform MnO2 nanosheets on three-dimensional macroporous graphene thin-films for supercapacitor electrodes[J]. RSC Advances, 2015, (110): 90307- 90312.
15 WANG G , ZHANG L , ZHANG J . A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2011, 41 (2): 797- 828.
16 WEI W , CUI X , CHEN W , et al. Manganese oxide-based materials as electrochemical supercapacitor electrodes[J]. Chemical Society Reviews, 2011, 40 (3): 1697- 1721.
doi: 10.1039/C0CS00127A
17 BROUSSE T , TOUPIN M , DUGAS R , et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2006, 153 (12): 2171- 2180.
doi: 10.1149/1.2352197
18 TAGUCHI A , INOUE S , AKAMARU S , et al. Phase transition and electrochemical capacitance of mechanically treated manganese oxides[J]. Journal of Alloys & Compounds, 2006, 414 (1): 137- 141.
19 CHANG J K , LEE M T , TSAI W T . In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J]. Journal of Power Sources, 2007, 166 (2): 590- 594.
doi: 10.1016/j.jpowsour.2007.01.036
20 BIESINGER M C , PAYNE B P , GROSVENOR A P , et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides:Cr, Mn, Fe, Co and Ni[J]. Applied Surface Science, 2011, 257 (7): 2717- 2730.
doi: 10.1016/j.apsusc.2010.10.051
21 ABOU K S . Hydrated layered manganese dioxide:part Ⅰ.synthesis and characterization of some hydrated layered manganese dioxides from α-NaMnO2[J]. Solid State Ionics, 2002, 150 (3): 407- 415.
22 PENG S , YAN S , WANG N , et al. Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries[J]. RSC Advances, 2018, (23): 12701- 12707.
23 LIU X M , ZHANG X G , FU S Y . Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J]. Materials Research Bulletin, 2006, 41 (3): 620- 627.
doi: 10.1016/j.materresbull.2005.09.006
24 于美, 李新杰, 马玉骁, 等. 石墨烯基复合超级电容器材料研究进展[J]. 材料工程, 2016, 44 (5): 101- 111.
24 YU M , LI X J , MA Y X , et al. Progress in research on graphene-based composite supercapacitor materials[J]. Journal of Materials Engineering, 2016, 44 (5): 101- 111.
25 MATHIEU T , THIERRY B , DANIEL B . Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J]. Chemistry of Materials, 2004, 16 (16): 3184- 3190.
doi: 10.1021/cm049649j
26 SIMON P , GOGOTSI Y . Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7 (11): 845- 854.
doi: 10.1038/nmat2297
[1] 宋永智, 毕松, 侯根良, 李浩, 赵彦凯, 刘朝辉. MnO2纳米棒的吸波性能及其超构表面设计[J]. 材料工程, 2022, 50(7): 110-118.
[2] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[3] 王瑶, 么贺祥, 俞娟, 王晓东, 黄培. 碳布负载的PI-MWCNTs柔性电极材料的合成及其电容性能[J]. 材料工程, 2021, 49(9): 51-59.
[4] 崔静轩, 吕东风, 张学凤, 郭鑫鑫, 刘洁, 张澳寒, 崔帅, 魏恒勇, 卜景龙. 电解液添加剂NaHCO3对多孔氮化铌纤维电化学性能的影响[J]. 材料工程, 2021, 49(6): 122-131.
[5] 郑俊生, 秦楠, 郭鑫, 金黎明, ZhengJim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[6] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[7] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[8] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[9] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[10] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[11] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[12] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[13] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[14] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[15] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn