Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 49-55    DOI: 10.11868/j.issn.1001-4381.2017.000499
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
δ-MnO2纳米片的制备、表征及电化学性能
陈翔1, 燕绍九1, 王楠1, 彭思侃1, 王晨1, 吴广明2, 戴圣龙1
1. 中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095;
2. 江西省送变电建设公司, 南昌 330200
Fabrication,characterization and electrochemical behavior of δ-MnO2 nanoflakes
CHEN Xiang1, YAN Shao-jiu1, WANG Nan1, PENG Si-kan1, WANG Chen1, WU Guang-ming2, DAI Sheng-long1
1. Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Jiangxi Power Transmission & Transformation Construction Company, Nanchang 330200, China
全文: PDF(3419 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 分别采用醋酸锰和乙醇还原高锰酸钾,制备2种超薄δ-MnO2纳米片电极材料(δ-MnO2-A与δ-MnO2-B)。通过XRD、XPS、SEM/TEM、比表面积分析等手段研究材料的晶体结构、化学成分、微观形貌和孔径分布特征。电化学性能测试表明:2种材料具有相似的比电容和倍率性能。但是相比于δ-MnO2-A,电极材料δ-MnO2-B具有更高的钾含量和锰空位含量,片层状结构更加清晰、稳定,因而充放电循环稳定性更好。在0.5mol/L Na2SO4电解液中,1mV·s-1扫描速率下δ-MnO2电极材料的比电容可达227F·g-1。100mV·s-1扫描速率、5000次循环后,电容保持率为87.6%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈翔
燕绍九
王楠
彭思侃
王晨
吴广明
戴圣龙
关键词 二氧化锰层状纳米片超级电容器储能电极材料    
Abstract:Two types of ultrathin-flaky δ-MnO2 electrode materials (denoted as δ-MnO2-A and δ-MnO2-B) were synthesized through the reduction of potassium permanganate with manganese acetate and ethanol separately.The crystalline structure,chemical component,microstructure and pore size distribution of these nano-materials were determined by XRD,XPS,SEM/TEM and BET analysis.The electrochemical test demonstrates two δ-MnO2 electrode materials own similar specific capacitance and rate capability.Comparing to δ-MnO2-A,however,electrode material δ-MnO2-B contains a higher potassium and manganese vacancy content,and the lamellar structure of δ-MnO2-B is more legible and stable,therefore it displays a much more superior cycling stability.In 0.5mol/L Na2SO4 electrolyte,the specific capacitance of δ-MnO2 reaches 227F·g-1(1mV·s-1) and the capacitance retention rate is achieved 87.6% after 5000 cycles at 100mV·s-1.
Key wordsmanganese dioxide    lamellar nanoflake    supercapacitor    energy storage electrode material
收稿日期: 2017-04-24      出版日期: 2019-02-21
中图分类号:  TQ152  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事磁性材料、石墨烯增强金属、储能材料及石墨烯应用方面的研究工作,联系地址:北京81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
CHEN Xiang, YAN Shao-jiu, WANG Nan, PENG Si-kan, WANG Chen, WU Guang-ming, DAI Sheng-long. Fabrication,characterization and electrochemical behavior of δ-MnO2 nanoflakes. Journal of Materials Engineering, 2019, 47(2): 49-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000499      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/49
[1] LEE H Y,GOODENOUGH J B.Supercapacitor behavior with KCl electrolyte[J].Journal of Solid State Chemistry,1999,144(1):220-223.
[2] LEE H Y, MANIVANNAN V,GOODENOUGH J B.Electrochemical capacitors with KCl electrolyte[J].Comptes Rendus de l Académie des Sciences-Series ⅡC-Chemistry,1999,2(11):565-577.
[3] WANG J G,KANG F,WEI B.Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J].Progress in Materials Science,2015,74:51-124.
[4] CHEN X,YAN S,WANG N,et al.Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes[J].RSC Advances,2017(88):55734-55740.
[5] POSR J E.Crystal structure determinations of synthetic sodium,magnesium,and potassium birnessite using TEM and the Rietveld method[J].American Mineralogist,1990,75(5/6):477-489.
[6] DEVARAJ S,MUNICHANDRAIAH N.Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J].Journal of Physical Chemistry C,2008,112(11):4406-4417.
[7] JOTHIRAMALINGAM R,VISWANATHAN B,VARADARAJAN T K.Synthesis and structural characterization of copper incorporated manganese oxide OMS-2 materials synthesized via potassium birnessite[J].Materials Chemistry & Physics,2006,100(2/3):257-261.
[8] FENG Q,LIU L,YANAGISAWA K.Effects of synthesis parameters on the formation of birnessite-type manganese oxides[J].Journal of Materials Science Letters,2000,19(17):1567-1570.
[9] SHEN X F,DING Y S,LIU J,et al.Control of nanometer-scale tunnel sizes of porous manganese oxide octahedral molecular sieve nanomaterials[J].Cheminform,2005,36(7):805-809.
[10] ZHANG X,YU P,ZHANG H,et al.Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2,nanosheets for supercapacitor applications[J].Electrochimica Acta,2013,89:523-529.
[11] LIU L,YAO L,TAN W,et al.Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials[J].Journal of Colloid & Interface Science,2016,482:183-192.
[12] ZHAO S,LIU T,HOU D,et al.Controlled synthesis of hierarchical birnessite-type MnO2 nanoflowers for supercapacitor applications[J].Applied Surface Science,2015,356:259-265.
[13] HUANG M,MI R,LIU H,et al.Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes[J].Journal of Power Sources,2014,269(4):760-767.
[14] ZHAO Y,MENG Y,WU H,et al.In situ anchoring uniform MnO2 nanosheets on three-dimensional macroporous graphene thin-films for supercapacitor electrodes[J].RSC Advances,2015(110):90307-90312.
[15] WANG G,ZHANG L,ZHANG J.A review of electrode materials for electrochemical supercapacitors[J].Chemical Society Reviews,2011,41(2):797-828.
[16] WEI W,CUI X,CHEN W,et al.Manganese oxide-based materials as electrochemical supercapacitor electrodes[J].Chemical Society Reviews,2011,40(3):1697-1721.
[17] BROUSSE T,TOUPIN M,DUGAS R,et al.Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J].Journal of the Electrochemical Society,2006,153(12):2171-2180.
[18] TAGUCHI A,INOUE S,AKAMARU S,et al.Phase transition and electrochemical capacitance of mechanically treated manganese oxides[J].Journal of Alloys & Compounds,2006,414(1):137-141.
[19] CHANG J K,LEE M T,TSAI W T.In situ Mn K-edge X-ray absorption spectroscopic studies of anodically deposited manganese oxide with relevance to supercapacitor applications[J].Journal of Power Sources,2007,166(2):590-594.
[20] BIESINGER M C,PAYNE B P,GROSVENOR A P,et al.Resolving surface chemical states in XPS analysis of first row transition metals,oxides and hydroxides:Cr,Mn,Fe,Co and Ni[J].Applied Surface Science,2011,257(7):2717-2730.
[21] ABOU K S.Hydrated layered manganese dioxide:part I.synthesis and characterization of some hydrated layered manganese dioxides from α-NaMnO2[J].Solid State Ionics,2002,150(3):407-415.
[22] PENG S,YAN S,WANG N,et al.Fluorinated graphene/sulfur hybrid cathode for high energy and high power density lithium primary batteries[J].RSC Advances,2018(23):12701-12707.
[23] LIU X M,ZHANG X G,FU S Y.Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors[J].Materials Research Bulletin,2006,41(3):620-627.
[24] 于美,李新杰,马玉骁,等.石墨烯基复合超级电容器材料研究进展[J].材料工程,2016,44(5):101-111. YU M,LI X J,MA Y X,et al.Progress in research on graphene-based composite supercapacitor materials[J].Journal of Materials Engineering,2016,44(5):101-111.
[25] MATHIEU T,THIERRY B,DANIEL B.Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor[J].Chemistry of Materials,2004,16(16):3184-3190.
[26] SIMON P,GOGOTSI Y.Materials for electrochemical capacitors[J].Nature Materials,2008,7(11):845-854.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[3] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[4] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[5] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[6] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[7] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[8] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[9] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[10] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[11] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
[12] 陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
[13] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[14] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[15] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn