Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 53-62    DOI: 10.11868/j.issn.1001-4381.2017.000519
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响
薛子明1, 雷卫宁1,2, 王云强1, 钱海峰1, 李奇林1,2
1. 江苏理工学院 机械工程学院, 江苏 常州 213000;
2. 江苏省 先进材料设计与增材制造重点实验室, 江苏 常州 213000
Effect of pulse duty cycle on microstructure and properties of graphene composite coating under supercritical carbon dioxide
XUE Zi-ming1, LEI Wei-ning1,2, WANG Yun-qiang1, QIAN Hai-feng1, LI Qi-lin1,2
1. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, Jiangsu, China;
2. Jiangsu Key Laboratory of Advanced Material Design and Additive Manufacturing, Changzhou 213000, Jiangsu, China
全文: PDF(14914 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以氧化石墨烯(GO)为第二相添加物,采用超临界二氧化碳流体(SCF-CO2)辅助脉冲复合电沉积技术制备超临界镍基石墨烯复合镀层。研究了脉冲占空比对镀层的微观结构和力学性能的影响。结果表明:超临界二氧化碳流体和氧化石墨烯共同作用可以显著细化复合镀层的显微组织;复合镀层镍衍射晶面(111)和(200)峰位的变化说明结晶过程中择优取向发生了改变;占空比参数的变化,对镀层力学性能影响较大。当占空比为50%时,超临界镍基石墨烯复合镀层的显微硬度值高达756.8HV0.2,磨痕截面积为4385μm2,与普通条件下制备出的镍基石墨烯复合镀层相比,其硬度和耐磨性分别提高了1.6倍和11倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛子明
雷卫宁
王云强
钱海峰
李奇林
关键词 超临界二氧化碳流体石墨烯占空比力学性能微观组织    
Abstract:The supercritical nickel-graphene composite coating was prepared by supercritical carbon dioxide fluid(SCF-CO2) assisted pulsed composite electrodeposition technique with graphene oxide (GO) as the second phase additive. The effect of pulse duty cycle on the microstructure and mecha-nical properties of the coatings was investigated. The results show that the microstructure of composite coating can be refined significantly by the combination of supercritical carbon dioxide fluid and graphene oxide. The change of the (111) and (200) peaks in the XRD patterns of the composite coating shows that change occurs in preferred orientation during the crystallization process. The change of duty cycle has great influence on the mechanical properties of the coatings. The micro-hardness of the supercritical nickel-graphene composite coating is as high as 756.8HV0.2 and the cross-sectional area of wear scar is 4385μm2 at 50% duty cycle. Compared with the nickel-graphene comp-osite coating prepared under conventional conditions, the microhardness and wear resistance of super-critical nickel-graphene composite coating are increased by 1.6 and 11 times.
Key wordsSCF-CO2    graphene    duty cycle    mechanical property    microstructure
收稿日期: 2017-04-26      出版日期: 2019-05-17
中图分类号:  TQ153.4  
  O613.71  
通讯作者: 雷卫宁(1963-),男,教授,博士,研究方向:精密、微细特种加工,联系地址:江苏省常州市中吴大道1801号江苏理工学院机械工程学院(213000),E-mail:leiweining@jsut.edu.cn     E-mail: leiweining@jsut.edu.cn
引用本文:   
薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
XUE Zi-ming, LEI Wei-ning, WANG Yun-qiang, QIAN Hai-feng, LI Qi-lin. Effect of pulse duty cycle on microstructure and properties of graphene composite coating under supercritical carbon dioxide. Journal of Materials Engineering, 2019, 47(5): 53-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000519      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/53
[1] QIAN H F, LEI W N, WANG C Y, et al. Microstructure and microhardness studies of nickel-based diamond composite coatings by electrodepositing in supercritical CO2[J]. Material Research Innovations, 2015, 19(Suppl 10):1-4.
[2] 吴化,陈涛,王庆辉. 电沉积Ni-SiC纳米复合镀层的显微组织分析[J]. 材料工程, 2011(12):48-52. WU H, CHEN T, WANG Q H. Microstructure analysis of Ni-SiC nanocomposite coating by electrodeposition[J]. Journal of Materials Engineering, 2011(12):48-52.
[3] LOW C T J, WILLS R G A, WALSH F C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface & Coatings Technology, 2006, 201(1/2):371-383.
[4] AAL A A. Hard and corrosion resistant nanocomposite coating for Al alloy[J]. Materials Science & Engineering:A, 2008, 474(1/2):181-187.
[5] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Ma-terials, 2010, 22(35):3906-3924.
[6] SHAO Y, WANG J, WU H, et al. Graphene based electro-chemical sensors and biosensors:a review[J]. Electroanalysis, 2010, 22(10):1027-1036.
[7] JAGANNADHAM K. Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2):6887-6890.
[8] JO I, HSU I K, LEE Y J, et al. Low-frequency acoustic phonon temperature distribution in electrically biased graphene[J]. Nano Letters, 2011, 11(1):85-90.
[9] FRANK I W, TANENBAUM D M, VAN D Z A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B Microelectronics & Nano-meter Structures, 2007, 25(6):2558-2561.
[10] POETSCHKE M, ROCHA C G, FOA TORRES L E F, et al. Modeling graphene-based nanoelectromechanical devices[J]. Physical Review B, 2010, 81(19):2498-2502.
[11] 吉传波,王晓峰,邹金文,等. 石墨烯增强镍基粉末高温合金复合材料的力学性能[J]. 材料工程, 2017, 45(3):1-6. JI C B, WANG X F, ZOU J W, et al. Mechanical properties of graphene reinforced nickel-based P/M superalloy[J]. Journal of Materials Engineering, 2017, 45(3):1-6.
[12] LI M, CHE H, LIU X, et al. Highly enhanced mechanical pro-perties in Cu matrix composites reinforced with graphene dec-orated metallic nanoparticles[J]. Journal of Materials Science, 2014, 49(10):3725-3731.
[13] VAROL T, CANAKCI A. Microstructure, electrical conduct-ivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy[J]. Metals and Mat-erials International, 2015, 21(4):704-712.
[14] 洪起虎,燕绍九,杨程,等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9):1-7. HONG Q H, YAN S J, YANG C, et al. Microstructure and mechanical properties of graphene oxide/copper composites[J]. Journal of Materials Engineering, 2016, 44(9):1-7.
[15] 张林,陈多礼,朱旻昊,等. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3):7-12. ZHANG L, CHEN D L, ZHU M H, et al. Effect of graphene oxide on anti-aging property of nitrile butadiene rubber[J]. Jou-rnal of Materials Engineering,2017,45(3):7-12.
[16] 沈宇,雷卫宁,王云强,等. 电流密度对超临界石墨烯电铸层微观结构与性能的影响[J]. 中国表面工程, 2016, 29(4):23-29. SHEN Y, LEI W N, WANG Y Q, et al. Effects of current den-sity on microstructure and properties of graphene composite ele-ctroforming layer under supercritical fluids[J]. China Surface Engineering, 2016, 29(4):23-29.
[17] CHUNG S T, TSAI W T. Nanocrystalline Ni-C electro-deposits prepared in electrolytes containing supercritical carbon dioxide[J]. Journal of the Electrochemical Society, 2009, 156(11):457-461.
[18] WANG H Y, CHUNG S T, CHUANG Y C, et al. Electroless Ni-B deposition from an emulsified supercritical carbon dioxide bath[J]. Thin Solid Films, 2010, 518(24):7505-7508.
[19] CHUNG S T, CHUANG Y C, CHIU S Y, et al. Effect of H3PO3, concentration on the electrodeposition of nanocrystalline Ni-P deposited in an emulsified supercritical CO2, bath[J]. Electrochimica Acta, 2011, 58(1):571-577.
[20] CHIU S Y, CHUNG S T, LIN C Y, et al. Electrodeposition of Ni-Al2O3, composite coatings employing supercritical CO2, baths[J]. Surface & Coatings Technology, 2014, 247(5):68-73.
[21] CHANG T F M, SONE M, SHIBATA A, et al. Bright nickel film deposited by supercritical carbon dioxide emulsion using ad-ditive-free watts bath[J]. Electrochimica Acta, 2010, 55(22):6469-6475.
[22] AND E D N, BRIGHT F V. The pH within PFPE reverse mi-celles formed in supercritical CO2[J]. Journal of Physical Chem-istry B, 1998, 102(8):1474-1478.
[23] ZHU Z W, ZHU D, QU N S, et al. Pulse electroforming of nickel under perturbation of hard particles[J]. Transactions of Nonferrous Metals Society of China, 2005(Suppl 3):251-254.
[24] SZEPTYCKA B, GAJEWSKA-MIDZIALEK A, BABUL T. Electrodeposition and corrosion resistance of Ni-graphene compo-site coatings[J]. Journal of Materials Engineering and Performance, 2016, 25(8):3134-3138.
[25] SEKAR R. Effect of saccharin and thiourea on electrodeposition of cobalt and characteristics of deposits[J]. Transactions of the Institute of Metal Finishing, 2015, 93(1):44-52.
[26] MAHARANA H S, RAI P K, BASU A. Surface-mechanical and electrical properties of pulse electrodeposited Cu-graphene oxide composite coating for electrical contacts[J]. Journal of Materials Science, 2017, 52(2):1089-1105.
[27] 徐滨士,王海斗,董世运,等. 纳米Al2O3/Ni复合电刷镀层的表征与微动磨损机理[J]. 稀有金属材料与工程, 2004, 33(8):785-788. XU B S, WANG H D, DONG S Y, et al. Characterization and strengthening mechanisms of nano-Al2O3/Ni composite layer[J]. Rare Metal Materials & Engineering, 2004, 33(8):785-788.
[28] WANG L, GAO Y, XUE Q, et al. Microstructure and tribolo-gical properties of electrodeposited Ni-Co alloy deposits[J]. Applied Surface Science, 2004, 242(3):326-332.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[4] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[5] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[6] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[7] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[8] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[11] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[12] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[13] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[14] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[15] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn