Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 53-62    DOI: 10.11868/j.issn.1001-4381.2017.000519
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响
薛子明1, 雷卫宁1,2, 王云强1, 钱海峰1, 李奇林1,2
1. 江苏理工学院 机械工程学院, 江苏 常州 213000;
2. 江苏省 先进材料设计与增材制造重点实验室, 江苏 常州 213000
Effect of pulse duty cycle on microstructure and properties of graphene composite coating under supercritical carbon dioxide
XUE Zi-ming1, LEI Wei-ning1,2, WANG Yun-qiang1, QIAN Hai-feng1, LI Qi-lin1,2
1. School of Mechanical Engineering, Jiangsu University of Technology, Changzhou 213000, Jiangsu, China;
2. Jiangsu Key Laboratory of Advanced Material Design and Additive Manufacturing, Changzhou 213000, Jiangsu, China
全文: PDF(14914 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以氧化石墨烯(GO)为第二相添加物,采用超临界二氧化碳流体(SCF-CO2)辅助脉冲复合电沉积技术制备超临界镍基石墨烯复合镀层。研究了脉冲占空比对镀层的微观结构和力学性能的影响。结果表明:超临界二氧化碳流体和氧化石墨烯共同作用可以显著细化复合镀层的显微组织;复合镀层镍衍射晶面(111)和(200)峰位的变化说明结晶过程中择优取向发生了改变;占空比参数的变化,对镀层力学性能影响较大。当占空比为50%时,超临界镍基石墨烯复合镀层的显微硬度值高达756.8HV0.2,磨痕截面积为4385μm2,与普通条件下制备出的镍基石墨烯复合镀层相比,其硬度和耐磨性分别提高了1.6倍和11倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
薛子明
雷卫宁
王云强
钱海峰
李奇林
关键词 超临界二氧化碳流体石墨烯占空比力学性能微观组织    
Abstract:The supercritical nickel-graphene composite coating was prepared by supercritical carbon dioxide fluid(SCF-CO2) assisted pulsed composite electrodeposition technique with graphene oxide (GO) as the second phase additive. The effect of pulse duty cycle on the microstructure and mecha-nical properties of the coatings was investigated. The results show that the microstructure of composite coating can be refined significantly by the combination of supercritical carbon dioxide fluid and graphene oxide. The change of the (111) and (200) peaks in the XRD patterns of the composite coating shows that change occurs in preferred orientation during the crystallization process. The change of duty cycle has great influence on the mechanical properties of the coatings. The micro-hardness of the supercritical nickel-graphene composite coating is as high as 756.8HV0.2 and the cross-sectional area of wear scar is 4385μm2 at 50% duty cycle. Compared with the nickel-graphene comp-osite coating prepared under conventional conditions, the microhardness and wear resistance of super-critical nickel-graphene composite coating are increased by 1.6 and 11 times.
Key wordsSCF-CO2    graphene    duty cycle    mechanical property    microstructure
收稿日期: 2017-04-26      出版日期: 2019-05-17
中图分类号:  TQ153.4  
  O613.71  
通讯作者: 雷卫宁(1963-),男,教授,博士,研究方向:精密、微细特种加工,联系地址:江苏省常州市中吴大道1801号江苏理工学院机械工程学院(213000),E-mail:leiweining@jsut.edu.cn     E-mail: leiweining@jsut.edu.cn
引用本文:   
薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
XUE Zi-ming, LEI Wei-ning, WANG Yun-qiang, QIAN Hai-feng, LI Qi-lin. Effect of pulse duty cycle on microstructure and properties of graphene composite coating under supercritical carbon dioxide. Journal of Materials Engineering, 2019, 47(5): 53-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000519      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/53
[1] QIAN H F, LEI W N, WANG C Y, et al. Microstructure and microhardness studies of nickel-based diamond composite coatings by electrodepositing in supercritical CO2[J]. Material Research Innovations, 2015, 19(Suppl 10):1-4.
[2] 吴化,陈涛,王庆辉. 电沉积Ni-SiC纳米复合镀层的显微组织分析[J]. 材料工程, 2011(12):48-52. WU H, CHEN T, WANG Q H. Microstructure analysis of Ni-SiC nanocomposite coating by electrodeposition[J]. Journal of Materials Engineering, 2011(12):48-52.
[3] LOW C T J, WILLS R G A, WALSH F C. Electrodeposition of composite coatings containing nanoparticles in a metal deposit[J]. Surface & Coatings Technology, 2006, 201(1/2):371-383.
[4] AAL A A. Hard and corrosion resistant nanocomposite coating for Al alloy[J]. Materials Science & Engineering:A, 2008, 474(1/2):181-187.
[5] ZHU Y, MURALI S, CAI W, et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Ma-terials, 2010, 22(35):3906-3924.
[6] SHAO Y, WANG J, WU H, et al. Graphene based electro-chemical sensors and biosensors:a review[J]. Electroanalysis, 2010, 22(10):1027-1036.
[7] JAGANNADHAM K. Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets[J]. Metallurgical and Materials Transactions B, 2012, 43(2):6887-6890.
[8] JO I, HSU I K, LEE Y J, et al. Low-frequency acoustic phonon temperature distribution in electrically biased graphene[J]. Nano Letters, 2011, 11(1):85-90.
[9] FRANK I W, TANENBAUM D M, VAN D Z A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B Microelectronics & Nano-meter Structures, 2007, 25(6):2558-2561.
[10] POETSCHKE M, ROCHA C G, FOA TORRES L E F, et al. Modeling graphene-based nanoelectromechanical devices[J]. Physical Review B, 2010, 81(19):2498-2502.
[11] 吉传波,王晓峰,邹金文,等. 石墨烯增强镍基粉末高温合金复合材料的力学性能[J]. 材料工程, 2017, 45(3):1-6. JI C B, WANG X F, ZOU J W, et al. Mechanical properties of graphene reinforced nickel-based P/M superalloy[J]. Journal of Materials Engineering, 2017, 45(3):1-6.
[12] LI M, CHE H, LIU X, et al. Highly enhanced mechanical pro-perties in Cu matrix composites reinforced with graphene dec-orated metallic nanoparticles[J]. Journal of Materials Science, 2014, 49(10):3725-3731.
[13] VAROL T, CANAKCI A. Microstructure, electrical conduct-ivity and hardness of multilayer graphene/copper nanocomposites synthesized by flake powder metallurgy[J]. Metals and Mat-erials International, 2015, 21(4):704-712.
[14] 洪起虎,燕绍九,杨程,等. 氧化石墨烯/铜基复合材料的微观结构及力学性能[J]. 材料工程, 2016, 44(9):1-7. HONG Q H, YAN S J, YANG C, et al. Microstructure and mechanical properties of graphene oxide/copper composites[J]. Journal of Materials Engineering, 2016, 44(9):1-7.
[15] 张林,陈多礼,朱旻昊,等. 氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J]. 材料工程, 2017, 45(3):7-12. ZHANG L, CHEN D L, ZHU M H, et al. Effect of graphene oxide on anti-aging property of nitrile butadiene rubber[J]. Jou-rnal of Materials Engineering,2017,45(3):7-12.
[16] 沈宇,雷卫宁,王云强,等. 电流密度对超临界石墨烯电铸层微观结构与性能的影响[J]. 中国表面工程, 2016, 29(4):23-29. SHEN Y, LEI W N, WANG Y Q, et al. Effects of current den-sity on microstructure and properties of graphene composite ele-ctroforming layer under supercritical fluids[J]. China Surface Engineering, 2016, 29(4):23-29.
[17] CHUNG S T, TSAI W T. Nanocrystalline Ni-C electro-deposits prepared in electrolytes containing supercritical carbon dioxide[J]. Journal of the Electrochemical Society, 2009, 156(11):457-461.
[18] WANG H Y, CHUNG S T, CHUANG Y C, et al. Electroless Ni-B deposition from an emulsified supercritical carbon dioxide bath[J]. Thin Solid Films, 2010, 518(24):7505-7508.
[19] CHUNG S T, CHUANG Y C, CHIU S Y, et al. Effect of H3PO3, concentration on the electrodeposition of nanocrystalline Ni-P deposited in an emulsified supercritical CO2, bath[J]. Electrochimica Acta, 2011, 58(1):571-577.
[20] CHIU S Y, CHUNG S T, LIN C Y, et al. Electrodeposition of Ni-Al2O3, composite coatings employing supercritical CO2, baths[J]. Surface & Coatings Technology, 2014, 247(5):68-73.
[21] CHANG T F M, SONE M, SHIBATA A, et al. Bright nickel film deposited by supercritical carbon dioxide emulsion using ad-ditive-free watts bath[J]. Electrochimica Acta, 2010, 55(22):6469-6475.
[22] AND E D N, BRIGHT F V. The pH within PFPE reverse mi-celles formed in supercritical CO2[J]. Journal of Physical Chem-istry B, 1998, 102(8):1474-1478.
[23] ZHU Z W, ZHU D, QU N S, et al. Pulse electroforming of nickel under perturbation of hard particles[J]. Transactions of Nonferrous Metals Society of China, 2005(Suppl 3):251-254.
[24] SZEPTYCKA B, GAJEWSKA-MIDZIALEK A, BABUL T. Electrodeposition and corrosion resistance of Ni-graphene compo-site coatings[J]. Journal of Materials Engineering and Performance, 2016, 25(8):3134-3138.
[25] SEKAR R. Effect of saccharin and thiourea on electrodeposition of cobalt and characteristics of deposits[J]. Transactions of the Institute of Metal Finishing, 2015, 93(1):44-52.
[26] MAHARANA H S, RAI P K, BASU A. Surface-mechanical and electrical properties of pulse electrodeposited Cu-graphene oxide composite coating for electrical contacts[J]. Journal of Materials Science, 2017, 52(2):1089-1105.
[27] 徐滨士,王海斗,董世运,等. 纳米Al2O3/Ni复合电刷镀层的表征与微动磨损机理[J]. 稀有金属材料与工程, 2004, 33(8):785-788. XU B S, WANG H D, DONG S Y, et al. Characterization and strengthening mechanisms of nano-Al2O3/Ni composite layer[J]. Rare Metal Materials & Engineering, 2004, 33(8):785-788.
[28] WANG L, GAO Y, XUE Q, et al. Microstructure and tribolo-gical properties of electrodeposited Ni-Co alloy deposits[J]. Applied Surface Science, 2004, 242(3):326-332.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[4] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[5] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[6] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[7] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[8] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[9] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[10] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[11] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[12] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[13] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[14] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[15] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn