Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (1): 25-30    DOI: 10.11868/j.issn.1001-4381.2017.000589
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Ti基金属玻璃复合材料的腐蚀行为
赵燕春1,2, 毛瑞鹏1,2, 袁小鹏1,2, 许丛郁1,2, 蒋建龙1,2, 孙浩1,2, 寇生中1,2
1. 兰州理工大学 省部共建有色金属加工与再利用国家重点实验室, 兰州 730050;
2. 兰州理工大学 材料科学与工程学院, 兰州 730050
Corrosion Behaviour of Ti-based Bulk Metallic Glass Matrix Composites
ZHAO Yan-chun1,2, MAO Rui-peng1,2, YUAN Xiao-peng1,2, XU Cong-yu1,2, JIANG Jian-long1,2, SUN Hao1,2, KOU Sheng-zhong1,2
1. State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;
2. College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(3606 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用水冷铜坩埚悬浮熔炼-铜模吸铸法制备了直径为3mm的(Ti0.5Ni0.580Cu20金属玻璃复合材料试样,对合金的组织结构进行表征,用电化学工作站三电极体系测试了不同腐蚀介质中的动电位极化曲线,并分析表征电化学腐蚀后的形貌和腐蚀产物。结果表明:合金组织由非晶基体+形状记忆晶体相组成,在铸造过程的温度梯度下呈现梯度组织,边缘为快冷形成的无序密堆非晶结构,心部主要析出相为过冷奥氏体相。在人工海水和模拟人体的PBS溶液中,合金均表现出良好的耐蚀性。与晶态TC4合金相比,自腐蚀电位高,腐蚀的热力学倾向小;自腐蚀电流密度低,极化电阻高,腐蚀的动力学速率低。合金在PBS溶液中由于介质中活性阴离子浓度低,比在人工海水中表现出更优异的抗蚀性。在腐蚀形貌中未发现点蚀坑,边缘区的氧化膜较心部区域更为致密均匀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵燕春
毛瑞鹏
袁小鹏
许丛郁
蒋建龙
孙浩
寇生中
关键词 金属玻璃形状记忆晶相组织腐蚀行为    
Abstract:(Ti0.5Ni0.5)80Cu20 metallic glass composite samples with 3mm diameter were prepared by the levitation suspend melting-water cooled Cu mold process, microstructure of the alloy was characterized. The potential dynamic polarization curves in the different media were tested by electrochemical workstation in a three-electrode system, meanwhile, the electrochemical corrosion morphology and corrosion products were analyzed and characterized. The results show that the microstructure consists of amorphous matrix and shape memory crystal phase, exhibits gradient microstructure in casting process of temperature gradient, random dense pile of amorphous structure is formed in the edge area due to fast cooling rate, the main precipitation phase is overcooling austenite phase in the core area. In artificial seawater and simulated body solution (PBS), the alloy exhibits good corrosion resistance. Compared with crystalline TC4 alloy, the alloy exhibits high free corrosion potential that shows low corrosion thermodynamics tendency and has low corrosion current density as well as high polarization resistance that indicates low dynamic corrosion rate. Due to the low activity anion concentration in PBS solution, the alloy exhibits more excellent corrosion resistance than in artificial seawater. No pitting corrosion pits and corrosion products were found after electrochemical corrosion. The oxide film in the edge area is more compact and uniform than in the core area as well.
Key wordsbulk metallic glass    shape memory phase    microstructure    corrosion behaviour
收稿日期: 2017-05-09      出版日期: 2018-01-18
中图分类号:  TG139.8  
通讯作者: 赵燕春(1984-),女,副教授,博士,主要从事块体非晶的开发与研究,联系地址:甘肃省兰州市七里河区兰工坪287号兰州理工大学材料科学与工程学院(730050),E-mail:yanchun_zhao@163.com     E-mail: yanchun_zhao@163.com
引用本文:   
赵燕春, 毛瑞鹏, 袁小鹏, 许丛郁, 蒋建龙, 孙浩, 寇生中. Ti基金属玻璃复合材料的腐蚀行为[J]. 材料工程, 2018, 46(1): 25-30.
ZHAO Yan-chun, MAO Rui-peng, YUAN Xiao-peng, XU Cong-yu, JIANG Jian-long, SUN Hao, KOU Sheng-zhong. Corrosion Behaviour of Ti-based Bulk Metallic Glass Matrix Composites. Journal of Materials Engineering, 2018, 46(1): 25-30.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000589      或      http://jme.biam.ac.cn/CN/Y2018/V46/I1/25
[1] GREER A L. Metallic glasses[J]. Science, 1995, 267(5206):1747-1953.
[2] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5):177-351. WANG W H. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5):177-351.
[3] SCHUH C A, HUFNAGEL T C, RAMAMURTY U. Mechanical behavior of amorphous alloys[J].Acta Mater,2007, 55(12):4067-4109.
[4] WANG T, WU Y D, SI J J, et al. Novel Ti-based metallic glasses with superior plastic yielding strength and corrosion resistance[J]. Mater Sci Eng:A, 2015, 642(7):297-303.
[5] LIU Y, WANG G, LI H F, et al. Ti-Cu-Zr-Fe-Sn-Si-Sc bulk metallic glass with good mechanical properties for biomedical applications[J].J Alloy Compd, 2016, 679(9):341-349.
[6] GARGARELLA P, PAULY S, SONG K K, et al. Ti-Cu-Ni shape memory bulk metallic glass composites[J]. Acta Mater, 2013,61(1):151-162.
[7] 赵燕春,寇生中,袁小鹏,等.形状记忆晶相强韧化Ti基非晶复合材料的组织和力学性能[J].稀有金属,2015,39(1):29-34. ZHAO Y C, KOU S Z, YUAN X P, et al. Microstructure and mechanical properties of Ti-based bulk amorphous alloys strengthened and toughened by shape memory crystals[J].Chinese Journal of Rare Metals, 2015, 39(1):29-34.
[8] CHEN J, WANG J Z, CHEN B B, et al. Tribocorrosion behaviors of Inconel 625 alloy sliding against 316 steel in seawater[J].Tribol Trans,2010,54(4):514-522.
[9] STERN M, GEARY A L. Electrochemical polarization:I. a theoretical analysis of the shape of polarization curves[J]. J Electrochem Soc, 1957, 104(1):56-63.
[10] 曹楚南.电化学腐蚀原理[M].北京:化学工业出版社,2008:99. CAO C N. Principles of electrochemistry of corrosion[M]. Beijing:Chemical Industry Press, 2008:99.
[11] 吕家舜,李锋,杨洪刚,等.热浸镀锌铝镁钢板镀层组织与耐蚀性能研究[J].材料工程,2012(10):89-93. LV J S,LI F,YANG H G, et al. Research on coating microstructure and corrosion behavior of galvanized Zn-Al-Mg coated steel sheet[J].Journal of Materials Engineering,2012(10):89-93.
[12] 李昱材,张国英,魏丹,等.金属电极电位与费米能级的关系[J].沈阳师范大学学报(自然科学版),2007,25(1):25-28. LI Y C, ZHANG G Y, WEI D, et al. Corresponding relationship between electrode potential and fermi level[J].Journal of Shenyang Normal University (Natural Science),2007,25(1):25-28.
[13] GUO S F, CHAN K C, XIE S H, et al. Novel centimeter-sized Fe-based bulk metallic glass with high corrosion resistance in simulated acid rain and seawater[J]. J Non-Cryst Solids,2013,369(6):29-33.
[14] BABILAS R, BAJOREK A, SIMKA W, et al. Study on corrosion behavior of Mg-based bulk metallic glasses in NaCl solution[J].Electrochim Acta,2016,209(8):632-642.
[15] 马洛宁,王天佑,张峥.短时氧化对定向凝固高温合金不同取向腐蚀性能的影响[J].材料工程,2016,44(7):78-87. MA L N,WANG T Y,ZHANG Z. Influence of short-time oxidation on corrosion properties of directionally solidified superalloys with different orientations[J]. Journal of Materials Engineering, 2016,44(7):78-87.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[3] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[4] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[5] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[6] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[7] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[8] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[9] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[10] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[11] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[12] 辛华, 刘建芳, 杨江鹏, 张辉, 赵星. 成膜基材对含氟丙烯酸酯/聚氨酯复合乳液自组织梯度化结构的影响[J]. 材料工程, 2020, 48(3): 59-65.
[13] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[14] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn