Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 127-133    DOI: 10.11868/j.issn.1001-4381.2017.000644
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
注射压缩成型与常规注射成型的模腔压力对比分析
王韬1,2, 葛勇1,2, 郎建林1,2, 孙琦伟1,2, 厉蕾1,2, 颜悦1,2
1. 中国航发北京航空材料研究院, 北京 100095;
2. 北京市先进运载系统结构透明件工程技术研究中心, 北京 100095
Comparison and Analysis on Cavity Pressure of Conventional Injection Molding and Injection Compression Molding
WANG Tao1,2, GE Yong1,2, LANG Jian-lin1,2, SUN Qi-wei1,2, LI Lei1,2, YAN Yue1,2
1. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. Beijing Engineering Research Center of Advanced Structural Transparence for the Modern Traffic System, Beijing 100095, China
全文: PDF(3593 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在自主开发的注射压缩模具上安装模腔压力传感器,从工艺角度出发,对常规注射成型和注射压缩成型的模腔压力进行了工艺相关性的对比与分析。结果表明,注射压缩可有效降低注射压力和模腔压力,使模腔压力场更加均匀。常规注射成型中模腔压力受模具温度的影响最大,其次为熔体温度、保压时间和保压压力,而注射压缩成型中压缩速率对模腔压力的影响最大,其次为熔体温度和模具温度,压缩行程最弱。低残余应力与低翘曲变形进一步验证了注射压缩的技术优势和压力场特征,表明了模腔压力具有重要的工艺性能指导作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王韬
葛勇
郎建林
孙琦伟
厉蕾
颜悦
关键词 注射压缩成型常规注射成型模腔压力工艺参数    
Abstract:The cavity pressure sensors were mounted in the self-developed injection compression mold. Comparison and analysis on cavity pressure of conventional injection molding and injection compression molding were conducted by changing process parameters. The results show that injection compression molding can greatly decrease the injection pressure and cavity pressure, and make the cavity pressure field more uniform. During the conventional injection molding,the influence of mold temperature on the cavity pressure is the most significant factor, followed by melt temperature, pressure holding time and holding pressure. During the injection compression molding, the compression speed influences the most, followed by melt temperature, mold temperature and compression stroke. The technological advantages and pressure field characteristic of injection compression molding were further validated with the low residual stress and small warpage, indicating the cavity pressure plays a major role in guiding processing properties.
Key wordsinjection compression molding    conventional injection molding    cavity pressure    processing parameters
收稿日期: 2017-05-22      出版日期: 2018-04-14
中图分类号:  TQ320.66  
通讯作者: 颜悦(1966-),男,研究员,博士,研究方向为透明件成型制造及功能镀膜,联系地址:北京市海淀区81信箱83分箱(100095),E-mail:yue.yan@biam.ac.cn     E-mail: yue.yan@biam.ac.cn
引用本文:   
王韬, 葛勇, 郎建林, 孙琦伟, 厉蕾, 颜悦. 注射压缩成型与常规注射成型的模腔压力对比分析[J]. 材料工程, 2018, 46(4): 127-133.
WANG Tao, GE Yong, LANG Jian-lin, SUN Qi-wei, LI Lei, YAN Yue. Comparison and Analysis on Cavity Pressure of Conventional Injection Molding and Injection Compression Molding. Journal of Materials Engineering, 2018, 46(4): 127-133.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000644      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/127
[1] CHEN S C, CHEN Y C, CHENG N T, et al. Simulation of injection-compression mold-filling process[J]. International Communications in Heat and Mass Transfer, 1998, 25(6):907-917.
[2] MARTIN F A, CANTON N. Combined injection and compression molding:US2938232[P]. 1957-06-21.
[3] SPECTOR D P, KINGSBURY J M. Fabrication of thermoplastic optical components by injection/compression molding:US4836960[P]. 1987-10-05.
[4] YANG S Y, KE M Z. Influence of processing on quality of injection-compression-molded disks[J]. Polymer Engineering & Science, 1995, 35(15):1206-1212.
[5] YANG S Y, CHEN Y C. Experimental study of injection-charged compression molding of thermoplastics[J]. Advances in Polymer Technology, 1998, 17(4):353-360.
[6] GUAN W S, HUANG H X. Back melt flow in injection-compression molding:effect on part thickness distribution[J]. International Communications in Heat and Mass Transfer, 2012, 39:792-797.
[7] 葛勇, 王韬, 郎建林, 等. 注射压缩成型工艺参数对厚壁聚碳酸酯制件厚度的影响[J]. 高分子材料科学与工程, 2015, 31(4):117-120. GE Y, WANG T, LANG J L, et al. Effects of injection compression molding parameters on thickness of thick polycarbonate parts[J]. Polymer Materials Science & Engineering, 2015, 31(4):117-120.
[8] MICHAELI W, WIELPUETZ M. Optimization of the optical part quality of polymer glasses in the injection compression moulding process[J]. Macromolecular Materials and Engineering, 2000, 284/285:8-13.
[9] 周明勇, 蒋炳炎, 鲁立君, 等. 聚合物纳米/亚微米结构零件注射成型的研究进展[J]. 材料工程, 2014(4):95-100. ZHOU M Y, JIANG B Y, LU L J, et al. Progress in research on polymer nano/sub-micro structure by injection molding[J]. Journal of Materials Engineering, 2014(4):95-100.
[10] 陈宇宏, 袁源, 刘小艳, 等. 注射成型和注射压缩成型透明件的光学性能对比与分析[J]. 航空材料学报, 2011, 31(2):55-60. CHEN Y H, YUAN Y, LIU X Y, et al. Comparison on optical properties of injection molded and injection compression molded transparencies[J]. Journal of Aeronautical Materials, 2011, 31(2):55-60.
[11] WANG T, YAN Y, LI L. Numerical simulations and experiments on the injection molding of aircraft transparencies[C]//29th Congress of the International Council of the Aeronautical Sciences, St Petersburg, Russia:ICAS, 2014.
[12] KURT M, KAMBER O S, KAYNAK Y, et al. Experimental investigation of plastic injection molding:assessment of the effects of cavity pressure and mold temperature on the quality of the final products[J]. Materials and Design, 2009, 30:3217-3224.
[13] WU H W, ZHANG S D, QU J P, et al. Measurement and analysis of cavity pressure and melt filling capacity during injection molding[J]. Polymer-Plastics Technology and Engineering, 2007, 46:123-127.
[14] HASSAN H. An experimental work on the effects of injection molding parameters on the cavity pressure and product weight[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1):675-686.
[15] GUAN W S, HUANG H X. A proposed technique to acquire cavity pressure using a surface strain sensor during injection-compression molding[J]. Journal of Manufacturing Science and Engineering, 2013, 135:021003.
[16] 曹伟, 张世勋, 王韬, 等. 聚碳酸酯熔体压缩过程流变特征及型腔压力演化规律[J], 精密成形工程, 2016(1):32-36. CAO W, ZHANG S X, WANG T, et al. Polycarbonate melt rheological characteristics and evolutionary regularity of cavity pressure in compression process[J]. Journal of Netshape Forming Engineering, 2016(1):32-36.
[17] 王韬, 曹伟, 颜悦, 等. 聚碳酸酯熔体挤压流变研究[J]. 材料工程, 2013(5):73-77. WANG T, CAO W, YAN Y, et al. Rheological behavior of polycarbonate melt under squeeze flow[J]. Journal of Materials Engineering, 2013(5):73-77.
[18] LEE H S, YOO Y G. Effects of processing conditions on cavity pressure during injection-compression molding[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(12):2155-2161.
[1] 栗卓新, 万千, 张天理, TILLMAN Wolfgang. 纳米改性涂层及焊接工艺参数对无镀铜实心焊丝导电嘴磨损影响的研究进展[J]. 材料工程, 2017, 45(12): 135-146.
[2] 王宁, 李健, 关志军, 谭凯. 工艺参数对钼粉烧结体近等温包套锻造成形过程中应变的影响[J]. 材料工程, 2015, 43(6): 46-51.
[3] 王忻凯, 邢丽, 徐卫平, 黄春平, 刘奋成. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程, 2015, 43(5): 8-12.
[4] 方宜武, 王显峰, 顾善群, 肖军. 自动铺丝过程中预浸料的侧向弯曲[J]. 材料工程, 2015, 43(4): 47-52.
[5] 李文亚, 黄春杰, 余敏, 廖汉林. 冷喷涂制备复合材料涂层研究现状[J]. 材料工程, 2013, 0(8): 1-10.
[6] 李运刚, 田薇, 方秀君. 制备工艺参数对Cu表面Cu/Si梯度层断面显微组织的影响[J]. 材料工程, 2013, (2): 65-68,98.
[7] 刘君, 郭学锋, 张忠明, 叶永南. 工艺参数对AZ31镁合金往复挤压过程的影响[J]. 材料工程, 2012, 0(5): 70-75.
[8] 栗卓新, 祝弘滨, 李辉, 孙日超. 热喷涂金属陶瓷复合涂层研究进展[J]. 材料工程, 2012, 0(5): 93-98.
[9] 郭明恩, 孙祖莉, 边文凤, 宋小然, 栾桂卿. 真空导入工艺参数对复合材料孔隙含量的影响[J]. 材料工程, 2012, 0(10): 54-57,62.
[10] 赵新宝, 刘林, 杨初斌, 张军, 李玉龙, 傅恒志. 镍基单晶高温合金凝固缺陷研究进展[J]. 材料工程, 2012, 0(1): 93-98.
[11] 王宏宇, 左敦稳, 马浩, 王明娣, 陆英艳. 工艺参数对压片预置式激光熔覆涂层微观质量的影响[J]. 材料工程, 2009, 0(9): 80-83,88.
[12] 赵海生, 潘晖, 孙计生, 李大斌. K640合金钎焊接头组织及工艺控制[J]. 材料工程, 2008, 0(9): 17-19,24.
[13] 陈玉华, 柯黎明, 徐世龙, 邢丽. 超薄不锈钢片的微激光焊接工艺研究[J]. 材料工程, 2008, 0(11): 28-31.
[14] 毕晓勤. 工艺参数对Ni-SiC复合镀层组织和性能的影响[J]. 材料工程, 2007, 0(5): 39-42.
[15] 李平, 王汉功, 乔生儒. 工艺参数对超音速电弧喷涂钛-铝涂层表面粗糙度的影响[J]. 材料工程, 2006, 0(8): 12-14,19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn