Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 8-14    DOI: 10.11868/j.issn.1001-4381.2017.000662
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能
余煜玺, 夏范森, 黄奇凡
厦门大学 材料学院 材料科学与工程系 福建省特种先进材料重点实验室, 福建 厦门 361005
Preparation of graphite modified PDC-SiCNO ceramics and its dielectric properties
YU Yu-xi, XIA Fan-sen, HUANG Qi-fan
Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
全文: PDF(3854 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以聚乙烯基硅氮烷(PVSZ)为原料,氧化石墨烯(GO)为碳源,无水乙醇(ETOH)为分散剂,制备石墨烯球增强SiCNO陶瓷(SiCNO-GO)。利用拉曼光谱(Raman)、电子自旋共振(EPR)和扫描电子显微镜(SEM)等表征手段,研究SiCNO-GO陶瓷结构对其介电性能的影响。结果表明:SiCNO-GO陶瓷的微球密度和粒径的大小与GO的含量有关;随着SiCNO-GO陶瓷中GO含量的增加,SiCNO-GO陶瓷的介电常数和介电损耗也随之增大,在GO含量为0.1%(质量分数)时达到最大值,而当GO质量分数为0.3%时,SiCNO-GO陶瓷的介电常数和介电损耗降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余煜玺
夏范森
黄奇凡
关键词 聚合物先驱体陶瓷石墨烯电学性能制备    
Abstract:Graphene ball reinforced SiCNO ceramics (SiCNO-GO) were prepared by using polyvinylsi-lazane (PVSZ) as raw material and graphene oxide (GO) as carbon source and anhydrous ethanol (ETOH) as dispersant. X-ray diffraction (XRD), Raman spectroscopy (Raman), electron spin resonance (EPR) and SEM were used to study the effect of SiCNO-GO ceramics on the dielectric properties. The results show that the microsphere density and particle size of SiCNO-GO ceramics are related to the content of GO. With the increase of GO content in SiCNO-GO ceramics, the dielectric constant and dielectric loss of SiCNO-GO ceramics also increase, reach the maximum value when the GO mass fraction is 0.1%. When the GO mass fraction is 0.3%, the dielectric constant and dielectric loss of the SiCNO-GO ceramics decrease.
Key wordspolymer derived ceramic(PDC)    graphene    dielectrical performance    preparation
收稿日期: 2017-05-24      出版日期: 2019-03-12
中图分类号:  TB332  
  TB321  
  TB34  
通讯作者: 余煜玺(1974-),男,博士,教授,从事专业为极端环境应用的新材料与器件,联系地址:福建省厦门市思明区思明南路422号厦门大学材料学院材料科学与工程系科学楼(361005),E-mail:yu_heart@xmu.edu.cn     E-mail: yu_heart@xmu.edu.cn
引用本文:   
余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
YU Yu-xi, XIA Fan-sen, HUANG Qi-fan. Preparation of graphite modified PDC-SiCNO ceramics and its dielectric properties. Journal of Materials Engineering, 2019, 47(3): 8-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000662      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/8
[1] COLOMBO P,MERA G,RIEDEL R,et al. Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society,2010,93(7):1805-1837.
[2] RAJ R,RIEDEL R,SARARU G D. Introduction to the special topical issue on ultrahigh-temperature polymer-derived ceramics[J]. Journal of the American Ceramic Society,2001,84(10):2158-2159.
[3] COLOMBO P. Engineering porosity in polymer-derived ceramics[J]. Journal of the European Ceramic Society,2008,28(7):1389-1395.
[4] LIEW L A,LIU Y,LUO R,et al. Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer[J]. Sensors and Actuators A:Physical,2002,95(2):120-134.
[5] SARKAR S,CHUNDER A,FEI W,et al. Superhydrophobic mats of polymer-derived ceramic fibers[J]. Journal of the American Ceramic Society,2008,91(8):2751-2755.
[6] LIU X,LI Y L,HOU F. Fabrication of SiOC ceramic microparts and patterned structures from polysiloxanes via liquid cast and pyrolysis[J]. Journal of the American Ceramic Society,2009,92(1):49-53.
[7] RIEDEL R,MERA G,HAUSER R,et al. Silicon-based polymer-derived ceramics:synthesis properties and applications-a review[J]. Journal of the Ceramic Society of Japan,2006,114(1330):425-444.
[8] LIEW L A,ZHANG W,BRIGHT V M,et al. Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique[J]. Sensors and Actuators A:Physical,2001,89(1):64-70.
[9] LIU Y,LIEW L A,LUO R,et al. Application of microforging to SiCN MEMS fabrication[J]. Sensors and Actuators A:Physical,2002,95(2):143-151.
[10] REN X,EBADI S,CHEN Y,et al. Characterization of SiCN ceramic material dielectric properties at high temperatures for harsh environment sensing applications[J]. IEEE Transactions on Microwave Theory and Techniques,2013,61(2):960-971.
[11] LI Y,YU Y,SAN H,et al. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J]. Applied Physics Letters,2013,103(16):163505.
[12] AKKAS H D,ÖVECOGLU M L,TANOGLU M. Development of Si-O-C based ceramic matrix composites produced via pyrolysis of a polysiloxane[M]. Zurich,Switzerland:Trans Tech Publications,2004.
[13] GEIM A K,NOVOSELOW K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
[14] 梁彤祥,刘娟,王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程,2014(6):89-96. LIANG T X,LIU J,WANG C. Electronic structure of graphene and its application advances[J]. Journal of Materials Engineering,2014(6):89-96.
[15] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200.
[16] FENG Y,FENG N,WEI Y,et al. Preparation and improved electrochemical performance of SiCN-graphene composite derived from poly(silylcarbondiimide) as Li-ion battery anode[J]. Journal of Materials Chemistry A,2014,2(12):4168-4177.
[17] STANKOVICH S,DIKIN D A,PINER R D,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
[18] KAMPERMAN M,DU P,SCARLAT R O,et al. Composition and morphology control in ordered mesostructured high-temperature ceramics from block copolymer mesophases[J]. Macromolecular Chemistry and Physics,2007,208(19/20):2096-2108.
[19] HAMWI A,MARCHAND V. Some chemical and electrochemi-cal properties of graphite oxide[J]. Journal of Physics and Chemistry of Solids,1996,57(6):867-872.
[20] GUO P,SONG H,CHEN X. Hollow graphene oxide spheres self-assembled by W/O emulsion[J]. Journal of Materials Chemistry,2010,20(23):4867-4874.
[21] SEREDYCH M,BANDOSZ T J. Mechanism of ammonia retent-ion on graphite oxides:role of surface chemistry and structure[J]. The Journal of Physical Chemistry C,2007,111(43):15596-15604.
[22] HAHN B,WEISSMANN R,GREIL P. Electron paramagnetic resonance investigation of carbon distribution in SiOC glasses[J]. Journal of Materials Science Letters,1996,15(14):1243-1244.
[23] WOO L Y,WANSOM S,HIXSON A D,et al. A universal equiva-lent circuit model for the impedance response of composites[J]. Journal of Materials Science,2003,38(10):2265-2270.
[24] LI Q,YIN X,DUAN W,et al. Dielectric and microwave absorp-tion properties of polymer derived SiCN ceramics annealed in N2 atmosphere[J]. Journal of the European Ceramic Society,2014,34(3):589-598.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 王倩倩, 郑俊生, 裴冯来, 戴宁宁, 郑剑平. 质子交换膜燃料电池膜电极的结构优化[J]. 材料工程, 2019, 47(4): 1-14.
[6] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[7] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[8] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[9] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[10] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn