Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 8-14    DOI: 10.11868/j.issn.1001-4381.2017.000662
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能
余煜玺, 夏范森, 黄奇凡
厦门大学 材料学院 材料科学与工程系 福建省特种先进材料重点实验室, 福建 厦门 361005
Preparation of graphite modified PDC-SiCNO ceramics and its dielectric properties
YU Yu-xi, XIA Fan-sen, HUANG Qi-fan
Fujian Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian, China
全文: PDF(3854 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以聚乙烯基硅氮烷(PVSZ)为原料,氧化石墨烯(GO)为碳源,无水乙醇(ETOH)为分散剂,制备石墨烯球增强SiCNO陶瓷(SiCNO-GO)。利用拉曼光谱(Raman)、电子自旋共振(EPR)和扫描电子显微镜(SEM)等表征手段,研究SiCNO-GO陶瓷结构对其介电性能的影响。结果表明:SiCNO-GO陶瓷的微球密度和粒径的大小与GO的含量有关;随着SiCNO-GO陶瓷中GO含量的增加,SiCNO-GO陶瓷的介电常数和介电损耗也随之增大,在GO含量为0.1%(质量分数)时达到最大值,而当GO质量分数为0.3%时,SiCNO-GO陶瓷的介电常数和介电损耗降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余煜玺
夏范森
黄奇凡
关键词 聚合物先驱体陶瓷石墨烯电学性能制备    
Abstract:Graphene ball reinforced SiCNO ceramics (SiCNO-GO) were prepared by using polyvinylsi-lazane (PVSZ) as raw material and graphene oxide (GO) as carbon source and anhydrous ethanol (ETOH) as dispersant. X-ray diffraction (XRD), Raman spectroscopy (Raman), electron spin resonance (EPR) and SEM were used to study the effect of SiCNO-GO ceramics on the dielectric properties. The results show that the microsphere density and particle size of SiCNO-GO ceramics are related to the content of GO. With the increase of GO content in SiCNO-GO ceramics, the dielectric constant and dielectric loss of SiCNO-GO ceramics also increase, reach the maximum value when the GO mass fraction is 0.1%. When the GO mass fraction is 0.3%, the dielectric constant and dielectric loss of the SiCNO-GO ceramics decrease.
Key wordspolymer derived ceramic(PDC)    graphene    dielectrical performance    preparation
收稿日期: 2017-05-24      出版日期: 2019-03-12
中图分类号:  TB332  
  TB321  
  TB34  
通讯作者: 余煜玺(1974-),男,博士,教授,从事专业为极端环境应用的新材料与器件,联系地址:福建省厦门市思明区思明南路422号厦门大学材料学院材料科学与工程系科学楼(361005),E-mail:yu_heart@xmu.edu.cn     E-mail: yu_heart@xmu.edu.cn
引用本文:   
余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
YU Yu-xi, XIA Fan-sen, HUANG Qi-fan. Preparation of graphite modified PDC-SiCNO ceramics and its dielectric properties. Journal of Materials Engineering, 2019, 47(3): 8-14.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000662      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/8
[1] COLOMBO P,MERA G,RIEDEL R,et al. Polymer-derived ceramics:40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society,2010,93(7):1805-1837.
[2] RAJ R,RIEDEL R,SARARU G D. Introduction to the special topical issue on ultrahigh-temperature polymer-derived ceramics[J]. Journal of the American Ceramic Society,2001,84(10):2158-2159.
[3] COLOMBO P. Engineering porosity in polymer-derived ceramics[J]. Journal of the European Ceramic Society,2008,28(7):1389-1395.
[4] LIEW L A,LIU Y,LUO R,et al. Fabrication of SiCN MEMS by photopolymerization of pre-ceramic polymer[J]. Sensors and Actuators A:Physical,2002,95(2):120-134.
[5] SARKAR S,CHUNDER A,FEI W,et al. Superhydrophobic mats of polymer-derived ceramic fibers[J]. Journal of the American Ceramic Society,2008,91(8):2751-2755.
[6] LIU X,LI Y L,HOU F. Fabrication of SiOC ceramic microparts and patterned structures from polysiloxanes via liquid cast and pyrolysis[J]. Journal of the American Ceramic Society,2009,92(1):49-53.
[7] RIEDEL R,MERA G,HAUSER R,et al. Silicon-based polymer-derived ceramics:synthesis properties and applications-a review[J]. Journal of the Ceramic Society of Japan,2006,114(1330):425-444.
[8] LIEW L A,ZHANG W,BRIGHT V M,et al. Fabrication of SiCN ceramic MEMS using injectable polymer-precursor technique[J]. Sensors and Actuators A:Physical,2001,89(1):64-70.
[9] LIU Y,LIEW L A,LUO R,et al. Application of microforging to SiCN MEMS fabrication[J]. Sensors and Actuators A:Physical,2002,95(2):143-151.
[10] REN X,EBADI S,CHEN Y,et al. Characterization of SiCN ceramic material dielectric properties at high temperatures for harsh environment sensing applications[J]. IEEE Transactions on Microwave Theory and Techniques,2013,61(2):960-971.
[11] LI Y,YU Y,SAN H,et al. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J]. Applied Physics Letters,2013,103(16):163505.
[12] AKKAS H D,ÖVECOGLU M L,TANOGLU M. Development of Si-O-C based ceramic matrix composites produced via pyrolysis of a polysiloxane[M]. Zurich,Switzerland:Trans Tech Publications,2004.
[13] GEIM A K,NOVOSELOW K S. The rise of graphene[J]. Nature Materials,2007,6(3):183-191.
[14] 梁彤祥,刘娟,王晨. 石墨烯的电子结构及其应用进展[J]. 材料工程,2014(6):89-96. LIANG T X,LIU J,WANG C. Electronic structure of graphene and its application advances[J]. Journal of Materials Engineering,2014(6):89-96.
[15] NOVOSELOV K S,GEIM A K,MOROZOV S V,et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature,2005,438(7065):197-200.
[16] FENG Y,FENG N,WEI Y,et al. Preparation and improved electrochemical performance of SiCN-graphene composite derived from poly(silylcarbondiimide) as Li-ion battery anode[J]. Journal of Materials Chemistry A,2014,2(12):4168-4177.
[17] STANKOVICH S,DIKIN D A,PINER R D,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
[18] KAMPERMAN M,DU P,SCARLAT R O,et al. Composition and morphology control in ordered mesostructured high-temperature ceramics from block copolymer mesophases[J]. Macromolecular Chemistry and Physics,2007,208(19/20):2096-2108.
[19] HAMWI A,MARCHAND V. Some chemical and electrochemi-cal properties of graphite oxide[J]. Journal of Physics and Chemistry of Solids,1996,57(6):867-872.
[20] GUO P,SONG H,CHEN X. Hollow graphene oxide spheres self-assembled by W/O emulsion[J]. Journal of Materials Chemistry,2010,20(23):4867-4874.
[21] SEREDYCH M,BANDOSZ T J. Mechanism of ammonia retent-ion on graphite oxides:role of surface chemistry and structure[J]. The Journal of Physical Chemistry C,2007,111(43):15596-15604.
[22] HAHN B,WEISSMANN R,GREIL P. Electron paramagnetic resonance investigation of carbon distribution in SiOC glasses[J]. Journal of Materials Science Letters,1996,15(14):1243-1244.
[23] WOO L Y,WANSOM S,HIXSON A D,et al. A universal equiva-lent circuit model for the impedance response of composites[J]. Journal of Materials Science,2003,38(10):2265-2270.
[24] LI Q,YIN X,DUAN W,et al. Dielectric and microwave absorp-tion properties of polymer derived SiCN ceramics annealed in N2 atmosphere[J]. Journal of the European Ceramic Society,2014,34(3):589-598.
[1] 徐晨曦, 胡安俊, 舒朝著, 龙剑平. 金属相二硫化钼在能量储存与转化中的应用进展[J]. 材料工程, 2020, 48(9): 34-46.
[2] 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48(9): 59-68.
[3] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[4] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[5] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[6] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[7] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[8] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 王霞, 王辉, 侯丽, 蒋欢, 周雯洁. 超疏水防腐蚀涂层的研究进展[J]. 材料工程, 2020, 48(6): 73-81.
[11] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[12] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[13] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[14] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[15] 温敬运, 邱晓宇, 李明飞, 彭锋, 边静, 孙润仓. 半纤维素基水凝胶制备及应用研究进展[J]. 材料工程, 2020, 48(2): 1-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn