Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (12): 17-24    DOI: 10.11868/j.issn.1001-4381.2017.000684
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
熔融6061和4043铝合金在纯钛表面的反应润湿
钟伟强, 靳鹏, 李富祥, 林巧力, 陈剑虹
兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Reactive Wetting of Pure Titanium by Molten 6061 and 4043 Aluminum Alloys
ZHONG Wei-qiang, JIN Peng, LI Fu-xiang, LIN Qiao-li, CHEN Jian-hong
State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metal, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(6211 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用改良座滴法研究了高真空条件下熔融6061和4043铝合金在600,650,700℃分别与纯钛(TA2)的反应润湿行为。结果表明:Al/Ti体系属于典型的反应润湿,铝合金中微量的Si元素在界面上产生了明显富集且满足热力学条件;界面上形成了富Si的致密的层片状Ti7Al5Si12相,致密层产生后阻碍熔体润湿母材;Ti7Al5Si12相的分解及三相线附近疏松的粒状Al3Ti相产生后能够破除钛表面的氧化膜,进而促进润湿;6061/TA2和4043/TA2两润湿体系铺展动力学均可由反应产物控制(Reaction Product Model)模型描述,整个润湿铺展过程分为两个阶段,即先呈指数铺展、后呈线性铺展;6061铝合金对应两个阶段的铺展活化能分别为56kJ/mol和112kJ/mol,4043铝合金以指数铺展为主,铺展活化能为47kJ/mol,Ti7Al5Si12相的分解对应于指数铺展阶段。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟伟强
靳鹏
李富祥
林巧力
陈剑虹
关键词 反应润湿热浸镀前驱膜TA2    
Abstract:The wetting of TA2 pure Ti by two industrial grade Al alloys (i.e.,6061 Al and 4043 Al alloys) was studied by using the modified sessile drop method at 600,650,700℃ under high vacuum. The results show Al/Ti system is a typical reactive wetting, the small amount of alloying element Si in the Al alloys can cause significant enrichment at liquid/solid interface and satisfy thermodynamic condition;the formation of the Si-rich phase (Ti7Al5Si12) strangling material exchange at triple line zone; Ti7Al5Si12 decomposition and Al3Ti formation can remove the oxide film and promote wetting;the spreading dynamics can be described by reaction product control model, further the whole wetting behavior can be divided into two stages:the first stage for the nonlinear spreading and the second stage forthe linear spreading;the activation energies which are 56kJ/mol, 47kJ/mol for nonlinear stages of 6061 Al and 4043 Al alloys, and 112kJ/mol for linear stage of 6061 Al alloys, respectively,Ti7Al5Si12 decomposition is corresponding to the nonlinear spreading.
Key wordsreactive wetting    hot dip    precursor film    TA2
收稿日期: 2017-06-06      出版日期: 2017-12-19
中图分类号:  TG174.443  
通讯作者: 林巧力(1983-),男,副教授,博士,主要从事表面改性、金属/金属及金属/陶瓷体系润湿性研究,联系地址:甘肃省兰州市兰州理工大学本部(730050),E-mail:lqllinqiaoli@163.com     E-mail: lqllinqiaoli@163.com
引用本文:   
钟伟强, 靳鹏, 李富祥, 林巧力, 陈剑虹. 熔融6061和4043铝合金在纯钛表面的反应润湿[J]. 材料工程, 2017, 45(12): 17-24.
ZHONG Wei-qiang, JIN Peng, LI Fu-xiang, LIN Qiao-li, CHEN Jian-hong. Reactive Wetting of Pure Titanium by Molten 6061 and 4043 Aluminum Alloys. Journal of Materials Engineering, 2017, 45(12): 17-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000684      或      http://jme.biam.ac.cn/CN/Y2017/V45/I12/17
[1] BOYER R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering:A, 1996, 213(1):103-114.
[2] LEYENS C, PETERS M, KAYSSER W A. Intermetallic Ti-Al coatings for protection of titanium alloys:oxidation and mechanical behavior[J]. Surface and Coatings Technology, 1997, 94/95:34-40.
[3] EGGELER G, AUER W, KAESCHE H. On the influence of silicon on the growth of the alloy layer during hot dip aluminizing[J]. Journal of Materials Science, 1986, 21(9):3348-3350.
[4] DEQING W, ZIYUAN S, YINGLI T. Microstructure and oxidation of hot-dip aluminized titanium at high temperature[J]. Applied Surface Science, 2005, 250(1):238-246.
[5] ZHANG Z G, PENG Y P, MAO Y L, et al. Effect of hot-dip aluminizing on the oxidation resistance of Ti-6Al-4V alloy at high temperatures[J]. Corrosion Science, 2012, 55:187-193.
[6] SWAMINATHAN S, KOLL T, POHL M, et al. Hot Dip Galvanizing Simulation of Interstitial Free Steel by Liquid Zinc Spin Coater:Influence of Dew Point on Surface Chemistry and Wettability[J]. Steel Research International, 2008, 79(1):66-72.
[7] LIN Q, JIN P, CAO R, et al. Reactive wetting of low carbon steel by Al 4043 and 6061 alloys at 600-750℃[J]. Surface and Coatings Technology, 2016, 302:166-172.
[8] XIAO P, DERBY B. Wetting of titanium nitride and titanium carbide by liquid metals[J]. Acta Materialia, 1996, 44(1):307-14.
[9] KIM P, JANG J, LEE T, et al. Interfacial reaction and wetting behavior in eutectic SnPb solder on Ni/Ti thin films and Ni foils[J]. Journal of Applied Physics, 1999, 86(12):6746-6751.
[10] KONDOH K, KAWAKAMI M, IMAI H, et al. Wettability of pure Ti by molten pure Mg droplets[J]. Acta Materialia, 2010, 58(2):606-614.
[11] LIU D M, ZHU Z W, LI Z K, et al. Wetting behavior and interface characteristic of Ti32.8Zr30.2Ni5.3Cu9Be22.7/Ti6Al4V[C]//Proceedings of the Materials Science Forum, Churerstrasse,Switzerland:Trans Tech Publications Ltd, 2016:385-390.
[12] LIU C C, OU C L, SHIUE R K. The microstructural observation and wettability study of brazing Ti-6Al-4V and 304 stainless steel using three braze alloys[J]. Journal of Materials Science, 2002, 37(11):2225-2235.
[13] GREMILLARD L, SAIZ E, RADMILOVIC V R, et al. Role of titanium on the reactive spreading of lead-free solders on alumina[J].Journal of Materials Research,2006,21(12):3222-3233.
[14] 庄鸿寿,罗格夏特E. 高温钎焊[M]. 北京:国防工业出版社, 1989.
[15] EFFENBERG G, ILYENKO S. Selected systems from Al-Si to Ni-Si-Ti[M]. Heidelberg:Spinger-Verlag Berlin, 2006.
[16] EUSTATHOPOULOS N, COUDURIER L. Adsorption and wettability in metal/ceramic systems[J]. Lecture Notes in Physics, 1991, 386:15-23.
[17] ZHANG R F, SHENG S H, LIU B X. Predicting the formation enthalpies of binary intermetallic compounds[J]. Chemical Physics Letters, 2007, 442(4/6):511-514.
[18] VOYTOVYCH R, ROBAUT F, EUSTATHOPOULOS N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Materialia, 2006, 54(8):2205-2214.
[19] LIN Q, QIU F, SUI R. Characteristics of precursor film in the wetting of Zr-based alloys on ZrC substrate at 1253K[J]. Thin Solid Films, 2014, 558:231-236.
[20] XIAN A P. Precursor film of tin-based active solder wetting on ceramics[J]. Journal of Materials Science, 1993, 28(4):1019-1030.
[21] PROTSENKO P, TERLAIN A, TRASKINE V, et al. The role of intermetallics in wetting in metallic systems[J]. Scripta Materialia, 2001, 45(12):1439-1445.
[22] DELANNAY F, FROYEN L, DERUYTTERE A. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites[J]. Journal of Materials Science, 1987, 22(1):1-16.
[23] LI Y, LIU W, SEKULIC D P, et al. Reactive wetting of AgCuTi filler metal on the TiAl-based alloy substrate[J]. Applied Surface Science, 2012, 259:343-348.
[24] YIN L, MESCHTER S J, SINGLER T J. Wetting in the Au-Sn system[J]. Acta Materialia, 2004, 52(10):2873-2888.
[25] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Progress in modelling of chemical-reaction limited wetting[J]. Journal of the European Ceramic Society, 2003, 23(15):2797-2803.
[26] BARIN I, PLATZKI G. Thermochemical data of pure substances[M]. 3rd ed. Weinheim:Wiley-VCH Verlag GmbH,1995.
[1] 周德琴, 陈伟, 张秋阳, 周银, 崔向红, 王树奇. 不同基体热浸镀铝镀层组织和高温磨损行为[J]. 材料工程, 2018, 46(2): 93-98.
[2] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[3] 舒冠华, 李新梅, 王攀. 锰对扩散退火后热浸镀Al-Mn镀层抗磨粒磨损性能的影响[J]. 材料工程, 2015, 43(11): 77-83.
[4] 童晨, 苏旭平, 李智, 王建华, 吴长军, 彭浩平, 徐鹏. 热浸镀Zn-6%Al-3%Mg镀层合金层生长研究[J]. 材料工程, 2013, 0(7): 54-60.
[5] 袁美蓉, 卢锦堂, 孔纲, 车淳山. 热镀锌层上硅酸盐膜的耐蚀性和自愈性[J]. 材料工程, 2012, 0(6): 48-53.
[6] 吕家舜, 李锋, 杨洪刚, 康永林. 热浸镀锌铝镁钢板镀层组织及腐蚀性能研究[J]. 材料工程, 2012, 0(10): 89-93.
[7] 钱庆生, 李海, 王芝秀, 王秀丽, 史志欣. HP40Nb钢热浸镀Al-Si高温氧化行为及组织研究[J]. 材料工程, 2011, 0(8): 52-57.
[8] 许乔瑜, 周巍. Zn-Ni-V热浸镀层组织及腐蚀电化学行为研究[J]. 材料工程, 2011, 0(2): 92-96.
[9] 孔纲, 刘仁彬, 车淳山, 卢锦堂. 锌浴温度对0.49%Si活性钢热浸镀锌层组织的影响[J]. 材料工程, 2011, 0(1): 81-86.
[10] 孔纲, 陈九龙, 卢锦堂. 饱和Ca(OH)2溶液pH值对热镀锌钢表面锌酸钙覆盖层的影响[J]. 材料工程, 2010, 0(9): 74-79.
[11] 张伟, 陈冬梅. 热浸镀镧铝钢的高温耐热行为研究[J]. 材料工程, 2008, 0(7): 51-54.
[12] 张伟. 热浸镀铝钢Al2O3/渗铝层界面空洞生长动力学研究[J]. 材料工程, 2007, 0(5): 36-38,42.
[13] 卢锦堂, 车淳山, 孔纲, 许乔瑜, 陈锦虹. 预镀镍对活性钢热镀锌的影响[J]. 材料工程, 2006, 0(6): 35-39.
[14] 魏云鹤, 于萍, 刘秀玉, 崔巍, 主沉浮, 张长桥. 钢基表面热镀锌镁合金镀层及其耐蚀性能研究[J]. 材料工程, 2005, 0(7): 40-42.
[15] 张长桥, 主沉浮, 于萍, 魏云鹤, 张晓茹, 高峰, 牟善良. 热镀Ni3Al耐蚀合金镀层液态冷凝过程的分子动力学模拟研究[J]. 材料工程, 2003, 0(3): 7-10,34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn