Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 47-55    DOI: 10.11868/j.issn.1001-4381.2017.000692
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
二维和零维纳米材料协同增强的高性能纳米复合材料
李曦
海军工程大学 基础部化学与材料教研室, 武汉 430033
High-performance nanocomposites synergistically reinforced by 2-dimensional montmorillonite and 0-dimensional nano TiO2
LI Xi
Department of Chemistry and Materials, Naval University of Engineering, Wuhan 430033, China
全文: PDF(9432 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 将二维蒙脱土和零维纳米TiO2共同复合到环氧树脂中,成功地制备出一种高性能有机蒙脱土/纳米TiO2/环氧树脂复合材料。力学性能测试和热分析显示,该复合材料在拉伸模量、拉伸强度、弯曲模量、弯曲强度、缺口冲击强度、玻璃化转变温度、热分解温度上都明显优于纯环氧树脂,也优于有机蒙脱土/环氧树脂复合材料和纳米TiO2/环氧树脂复合材料。XRD检测和透射电子显微镜观察显示,在有机蒙脱土/纳米TiO2/环氧树脂复合材料中,蒙脱土被完全剥离为纳米单片,和纳米TiO2交错分布于环氧树脂中。选择适宜的两种维度的纳米材料复合于聚合物中,是制备新型高性能复合材料的成功思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李曦
关键词 有机蒙脱土纳米TiO2维度环氧树脂纳米复合材料    
Abstract:Comprehensive high-performance epoxy nanocomposites were successfully prepared by co-incorporating 2-dimensional montmorillonite (MMT) and 0-dimensional nano TiO2 co-incorporated into epoxy. Mechanical tests and thermal analyses show that the resulting epoxy/MMT/nano TiO2 nanocomposites obtained are obviously superior to pure epoxy, epoxy/MMT nanocomposites, and epoxy/nano TiO2 nanocomposites in tensile modulus, tensile strength, flexural modulus, flexural strength, notch impact strength, glass transition temperature, and thermal decomposition temp-erature. X-ray diffraction and transmission electron microscopy inspection reveal that in the epoxy/MMT/nano TiO2 nanocomposites, the MMT is completely exfoliated into 2-dimensional nanoscale mono-platelets, which is intermingled with the 0-dimensional nano TiO2 spheres in epoxy resion. This study shows is that co-incorporating two proper, dimensionally different nanomaterials into polymer matrices could be a successful pathway in preparing comprehensive high-performance polymer nanocomposites.
Key wordsorgano MMT    nano TiO2    dimensionality    epoxy    nanocomposite
收稿日期: 2017-06-05      出版日期: 2019-04-19
中图分类号:  TB333  
通讯作者: 李曦(1977-),男,讲师,博士,研究方向为有机-无机纳米复合材料,联系地址:湖北省武汉市解放大道717号14邮箱(430033),E-mail:lizhengxi_gg@163.com     E-mail: lizhengxi_gg@163.com
引用本文:   
李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
LI Xi. High-performance nanocomposites synergistically reinforced by 2-dimensional montmorillonite and 0-dimensional nano TiO2. Journal of Materials Engineering, 2019, 47(4): 47-55.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000692      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/47
[1] KONDYURIN A,BILEK M.Etching and structure transforma-tions in uncured epoxy resin under RF-plasma and plasma immer-sion ion implantation[J].Nucl Instrum Methods Phys Res Sec A,2010,268(10):1568-1580.
[2] JANG J S,VARISCHETTI J,LEE G W,et al.Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites[J].Compos Part A,2011,42(1):98-103.
[3] STRACHOTA A,RODZEN K,RIBOT F,et al.Tin-based "super-POSS" building blocks in epoxy nanocomposites with highly imp-roved oxidation resistance[J].Polymer,2014,55(16):3498-3515.
[4] KINGSTON C,ZEPP R,ANDRADY A,et al.Release characte-ristics of selected carbon nanotube polymer composites[J]. Carbon,2014,68(3):33-57.
[5] LIU Y,KUMAR S.Polymer/carbon nanotube nano composite fibers-a review[J].ACS Appl Mater Interfaces,2014,6(9):6069-6087.
[6] YUAN B,BAO C,SONG L,et al.Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization beha-vior and mechanical properties[J].Chem Eng J,2014,237(5):411-420.
[7] 张林,陈多礼,朱旻昊,等.氧化石墨烯对阻尼丁腈橡胶抗老化性能的影响[J].材料工程,2017,45(3):7-12. ZHANG L,CHEN D L,ZHU M H,et al.Effect of graphene oxide on anti-aging property of nitrile butadiene rubber[J].Journal of Materials Engineering,2017,45(3):7-12.
[8] 马强,罗静,陈元勋,等.双亲无规共聚物修饰碳纳米管/环氧树脂复合材料的制备与性能[J].材料工程,2016,44(9):109-114. MA Q,LUO J,CHEN Y X,et al.Preparation and performance of amphiphilic random copolymer noncovalently modified MWCNTS/epoxy composite[J].Journal of Materials Engineering,2016,44(9):109-114.
[9] 郑辉东,欧忠星,郑玉婴,等.功能石墨烯/热塑性聚氨酯复合材料膜的制备及性能[J].材料工程,2016,44(11):114-119. ZHENG H D,OU Z X,ZHENG Y Y,et al.Preparation and properties of functional graphene/thermoplastic polyurethane composite film[J].Journal of Materials Engineering,2016,44(11):114-119.
[10] AMIT C,MUHAMMAD S I.Fabrication and characterization of TiO2-epoxy nanocomposite[J].Materials Science and Engin-eering:A,2008,487(1):574-585.
[11] DEAN D,WALKER R,THEODORE M,et al.Chemorheology and properties of epoxy/layered silicate nanocomposites[J].Polymer,2005,46(9):3014-3021.
[12] CHEN C G,JUSTICE R S,SCHAEFER D W,et al.Highly dispersed nanosilica-epoxy resins with enhanced mechanical properties[J].Polymer,2009,49(17):3805-3815.
[13] AKBARI B,BAGHERI R.Deformation mechanism of epoxy/clay nanocomposite[J].European Polymer Journal,2007,43(3):782-788.
[14] LI X,ZHAN Z J,PENG G R,et al.Epoxy nanocomposites co-reinforced by two dimensionally different nanoscale particles[J].Polymer Science Series B,2011,53(12):595-600.
[15] 王其磊.磁性MH/Fe3O4/SR复合材料的耐热机理及摩擦性能[J].材料工程,2015,43(10):73-78. WANG Q L.Heat-resistant mechanism and friction property of magnetic MH/Fe3O4/SR composites[J].Journal of Materials Engineering,2015,43(10):73-78.
[16] KADAMBI S B,PRAMODA K,RAMAMURTY U,et al.Carbon-nanohorn-reinforced polymer matrix composites:syner-getic benefits in mechanical properties[J].ACS Appl Mater Interfaces,2015,7(31):17016-17022.
[17] KARIMI A,WAN DAUD W M A.Materials,preparation,and characterization of PVA/MMT nanocomposite hydrogels:a review[J].Polym Compos,2015,49(7):1763-1767.
[18] 索军营,李帆,李璐璐,等.蒙脱土纳米增强二苯醚亚苯基硅橡胶的阻隔性能研究[J].航空材料学报,2015,35(2):77-82. SUO J Y,LI F,LI L L,et al.Barrier effect of montmo-rillonitenano-reinforcing diphenyl ether phenylene silicone rubber[J].Journal of Aeronautical Materials,2015,35(2):77-82.
[19] QUARESIMIN M,VARLEY R J.Understanding the effect of nano-modifier addition upon the properties of fibre reinforced laminates[J].Compos Sci Technol,2008,68(3/4):718-726.
[20] HUSSAIN F,CHEN J H,HOJJATI M.Epoxy-silicate nanocomposites:cure monitoring and characterization[J].Mat Sci Eng A,2007,445(6):467-476.
[21] DEANA D,WALKERB R,THEODOREB M,et al.Chemo-rheology and properties of epoxy/layered silicate nanocomposites[J].Polymer,2005,46(9):3014-3021.
[22] XIE W,GAO Z,PAN W P,et al.Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite[J].Chem Mat-er,2001,13(9):2979-2990.
[23] GAO F G.Clay/polymer composites:the story[J].Mater Today,2004,7(11):50-55.
[24] WANG J W,QIN S C.Study on the thermal and mechanical properties of epoxy-nanoclay composites:the effect of ultrasonic stirring time[J].Mater Lett,2007,61(19/20):4222-4224.
[25] MAROUF B T,MAI Y W,BAGHERI R,et al.Toughening of epoxy nanocomposites:nano and hybrid effects[J].Polym Rev,2016,56(1):70-112.
[26] WU Z,WAN M,WANG Z.The gas phase SiO2/epoxy nanoco-mposites with enhanced mechanical and thermal properties[J].High Perform Polym,2015,27(4):469-475.
[27] PUGLIA D,FORTUNATI E,D'AMICO D A,et al.Influence of organically modified clays on the properties and disintegrability in compost of solution cast poly(3-hydroxybutyrate) films[J].Polym Degrad Stab,2014,99(13):127-135.
[28] SARAVANAN S,RAMAMURTHY P C,MADRAS G.Effects of temperature and clay content on water absorption character-istics of modified MMT clay/cyclic olefin copolymer nanocom-posite films:permeability,dynamic mechanical properties and the encapsulated organic device performance[J].Compos Part B,2015,73(10):1-9.
[29] JOHNSEN B B,KINLOCH A J,MOHAMMED R D,et al.Toughening mechanisms of nanoparticle-modified epoxy polyme-rs[J].Polymer,2007,48(2):530-541.
[30] MASOOMEH G,MASOUD J.Hybridizing MWCNT with nano metal oxides and TiO2 in epoxy composites:influence on mech-anical and thermal performances[J].J Appl Polym Sci,2016, 133(34):43834.
[31] CHEN C,MORGAN A B.Mild processing and characterization of silica epoxy hybrid nanocomposite[J].Polymer,2009,50(26):6265-6273.
[32] DZUHRI S,YUHANA N Y,KHAIRULAZFAR M.Thermal stability and decomposition study of epoxy/clay nanocomposites[J].Sains Malaysiana,2015,44(3):441-448.
[33] ROLDUGHIN V I,SERENKO O A,GETMANOVA E V,et al.Effect of hybrid nanoparticles on glass transition temperature of polymer nanocomposites[J].Polymer Composites,2016,37(7):1978-1990.
[1] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[2] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[3] 张博文, 唐禹尧, 崔玉青, 魏玮, 李小杰, 罗静, 刘晓亚. 六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能[J]. 材料工程, 2019, 47(1): 91-96.
[4] 乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
[5] 张宇, 黄峰, 马金瑞, 刘强, 孙煜. 羟基化处理对氮化硼膜耐原子氧性能的影响[J]. 材料工程, 2018, 46(7): 61-67.
[6] 左银泽, 陈亮, 朱斌, 高延敏. 纳米氧化锌负载氧化石墨烯/环氧树脂复合材料性能研究[J]. 材料工程, 2018, 46(5): 22-28.
[7] 王飞, 贾书海, 唐振华, 汪永林. 石墨烯纳米复合材料光驱动技术的研究进展[J]. 材料工程, 2018, 46(4): 12-22.
[8] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[9] 郭妙才, 洪旭辉, 李亚锋. 非均相固化体系对复合材料树脂微观力学均匀性的影响[J]. 材料工程, 2018, 46(10): 142-148.
[10] 任志东, 梁晨曦, 郝思嘉, 邢悦, 田俊鹏, 戴圣龙, 杨程. 低熔点固化剂对环氧树脂性能的影响[J]. 材料工程, 2018, 46(10): 156-161.
[11] 曾少华, 申明霞, 段鹏鹏, 郑鸿奎, 王珠银. 碳纳米管-玻璃纤维织物增强环氧复合材料的结构与性能[J]. 材料工程, 2017, 45(9): 38-44.
[12] 侯桂香, 谢建强, 李婷婷, 高俊刚, 常娇. MAP-POSS/不饱和环氧树脂混杂光固化膜制备与性能[J]. 材料工程, 2017, 45(8): 49-54.
[13] 赵燕茹, 马建中, 刘俊莉. 可见光响应型ZnO基纳米复合光催化材料的研究进展[J]. 材料工程, 2017, 45(6): 129-137.
[14] 毕波, 王学宝. 纳米碳材料在聚合物阻燃中的应用研究进展[J]. 材料工程, 2017, 45(5): 135-144.
[15] 张旭锋, 余金光, 韦家虎, 益小苏. 生物质中温热熔预浸料用环氧树脂体系[J]. 材料工程, 2017, 45(4): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn