Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 97-104    DOI: 10.11868/j.issn.1001-4381.2017.000761
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
暴露高活性晶面的TiO2纳米管的制备及生物活性
权月1, 尹杰1, 王园园1, 包斯元1, 鲁雄1,2, 冯波1,2, 周杰1,2
1. 西南交通大学 材料科学与工程学院, 成都 610031;
2. 西南交通大学 材料先进技术教育部重点实验室, 成都 610031
Preparation and bioactivity of TiO2 nanotubes exposed with highly active facets
QUAN Yue1, YIN Jie1, WANG Yuan-yuan1, BAO Si-yuan1, LU Xiong1,2, FENG Bo1,2, ZHOU Jie1,2
1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
2. Key Laboratory for Advanced Technologies of Materials(Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
全文: PDF(12076 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用多次阳极氧化技术,在金属钛表面制备(001)晶面族择优生长的TiO2纳米管阵列,研究电解液成分对锐钛矿TiO2不同晶面相对比例的影响并考察其生物学活性。采用扫描电镜(SEM)、X射线衍射(XRD)等方法分析纳米管阵列的形貌特征和晶体结构,通过生物矿化CaP盐的沉积和蛋白吸附实验评价样品晶面对生物活性的影响。结果表明:通过改变电解液中H2O的含量,能够便捷调控锐钛矿TiO2纳米管中不同晶面的相对比例。当H2O含量为2%(体积分数)时,制备得到的TiO2纳米管阵列(004)晶面的织构系数Tc(004)可达4.76。而具有(001)优势晶面族的TiO2纳米管,在类人体环境中能够为生物矿化和蛋白吸附提供更多的活性位点,加速羟基磷灰石的沉积并增加蛋白吸附量,表现出更优异的生物学活性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
权月
尹杰
王园园
包斯元
鲁雄
冯波
周杰
关键词 TiO2纳米管(001)晶面生物矿化蛋白吸附    
Abstract:TiO2 nanotubes arrays with dominant (001) facets were fabricated by multi-anodic oxidation technology. The influence factor of the electrolyte composition on the ratio of different facets for anatase TiO2 and the bioactivity were investigated. Besides, the characterization of the surface morphologies and crystal structures were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD),etc. Finally, the bioactivity was estimated by the CaP salt deposition vis biomin-eralization process and protein adsorption experiment. The results show that the relative proportions of different facets in the TiO2 nanotubes can be adjusted by changing the content of H2O in the electrolyte. The (004) facet texture coefficient of TiO2 nanotubes arrays prepared in 2% H2O(volume fraction) electrolyte reaches up to 4.76. The TiO2 nanotubes with dominant (001) facets can accelerate the deposition of hydroxyapatite and raise the amount of protein adsorption in the humanoid environment by providing more active sites for biomineralization and protein adsorption. The TiO2 nanotubes with a higher proportion of (001) facets have the more excellent biological activity.
Key wordsTiO2 nanotube    (001) facet    biomineralization    protein adsorption
收稿日期: 2017-06-15      出版日期: 2019-04-19
中图分类号:  TG146.23  
  TB43  
通讯作者: 周杰(1980-),男,工程师,博士,从事纳米生物材料方面的研究工作,联系地址:四川省成都市西南交通大学九里校区材料学院(610031),E-mail:zhoujie@swjtu.edu.cn     E-mail: zhoujie@swjtu.edu.cn
引用本文:   
权月, 尹杰, 王园园, 包斯元, 鲁雄, 冯波, 周杰. 暴露高活性晶面的TiO2纳米管的制备及生物活性[J]. 材料工程, 2019, 47(4): 97-104.
QUAN Yue, YIN Jie, WANG Yuan-yuan, BAO Si-yuan, LU Xiong, FENG Bo, ZHOU Jie. Preparation and bioactivity of TiO2 nanotubes exposed with highly active facets. Journal of Materials Engineering, 2019, 47(4): 97-104.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000761      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/97
[1] ZHANG Y,CHEN Y,KOU H,et al. Enhanced bone healing in porous Ti implanted rabbit combining bioactive modification and mechanical stimulation[J]. J Mech Behav Biomed Mater,2018,86:336-344.
[2] UREÑA J,TSIPAS S,JIMÉNEZ-MORALES A,et al. Cellular behaviour of bone marrow stromal cells on modified Ti-Nb surfaces[J].Materials & Design,2018,140:452-459.
[3] 戈军伟,陈梁锋,李亚男,等. 高(001)晶面锐钛矿二氧化钛纳米材料的合成与应用[J]. 应用化工,2015,44(4):739-745. GE J W,CHEN L F,LI Y N,et al. Synthesis and application of anatase TiO2 with exposed (001) facet[J]. Applied Chemical Industry,2015,44(4):739-745.
[4] GONG X Q,SELLONI A. Reactivity of anatase TiO2 nanopa-rticles:the role of the minority (001) surface[J]. The Journal of Physical Chemistry B,2005,109(42):19560-19562.
[5] 李智,葛少华. 纳米二氧化钛在生物医学中的应用进展[J]. 口腔医学,2017,37(1):85-88. LI Z,GE S H. Research progress on the application of nano-sized dioxide titanium in biomedicine field[J]. Stomatology,2017,37(1):85-88.
[6] WEN C Z,JIANG H B,QIAO S Z,et al. Synthesis of highrea-ctive facets dominated anatase TiO2[J]. Journal of Materials Chemistry,2011,21(20):7052-7061.
[7] ZHOU J,YIN L,LI H,et al. Heterojunction of SrTiO3/TiO2 nanotubes with dominant (001) facets:synthesis,formation mech-anism and photoelectrochemical properties[J]. Materials Science in Semiconductor Processing,2015,40:107-116.
[8] 陈昱,王京钰,李维尊,等. 新型二氧化钛基光催化材料的研究进展[J]. 材料工程,2016,44(3):103-113. CHEN Y,WANG J Y,LI W Z,et al. Research progress in TiO2-based photocatalysis material[J]. Journal of Materials Engin-eering,2016,44(3):103-113.
[9] GORDON T R,CARGNELLO M,PAIK T,et al. Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morph-ology,oxygen vacancy concentration,and photocatalytic activity[J]. Journal of the American Chemical Society,2012,134(15):6751-6761.
[10] HERMAN G,SIEVERS M,GAO Y. Structure determination of the two-domain (1×4) anatase TiO2 (001) surface[J]. Physical Review Letters,2000,84(15):3354-3357.
[11] XU H,REUNCHAN P,OUYANG S,et al. Anatase TiO2 single crystals exposed with high-reactive {111} facets toward efficient H2 evolution[J]. Chemistry of Materials,2013,25(3):405-411.
[12] ONG W J,TAN L L,CHAI S P,et al. Highly reactive {001} facets of TiO2-based composites:synthesis,formation mechanism and characterization[J]. Nanoscale,2014,6(4):1946-2008.
[13] YANG Z,MA Z,PAN D,et al. Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented,single-crystal-like TiO2 nanotube arrays[J]. Ceramics International,2014,40(1):173-180.
[14] JUNG M H,KO K C,LEE J Y. Single crystalline-like TiO2 nanotube fabrication with dominant (001) facets using poly(vinylpyrrolidone) for high efficiency solar cells[J]. The Journal of Physical Chemistry C,2014,118(31):17306-17317.
[15] YANG H G,SUN C H,QIAO S Z,et al. Anatase TiO2 single crystals with a large percentage of reactive facets[J]. Nature,2008,453(7195):638-641.
[16] ACEVEDOP P,GONZALEZ F,GONZALEZ G,et al. The effect of anatase crystal orientation on the photoelectrochemical performance of anodic TiO2 nanotubes[J]. Phys Chem Chem Phys,2014,16(47):26213-26220.
[17] MA X,DAI Y,GUO M,et al. Insights into the role of surface distortion in promoting the separation and transfer of photog-enerated carriers in anatase TiO2[J]. The Journal of Physical Chemistry C,2013,117(46):24496-24502.
[18] LI H,ZHOU J,ZHANG X,et al. Constructing stable NiO/N-doped TiO2 nanotubes photocatalyst with enhanced visible-light photocatalytic activity[J]. Journal of Materials Science:Materials in Electronics,2015,26(4):2571-2578.
[19] ZHONG J S,WANG Q Y,ZHOU J,et al. Highly efficient photoelectrocatalytic removal of RhB and Cr(Ⅵ) by Cu nanop-articles sensitized TiO2 nanotube arrays[J]. Applied Surface Science,2016,367:342-346.
[20] YANG Z,MA Z,PAN D,et al. Enhancing the performance of front-illuminated dye-sensitized solar cells with highly [001] oriented,single-crystal-like TiO2 nanotube arrays[J]. Ceramics International,2014,40(1):173-180.
[21] LEE S,PARK I J,KIM D H,et al. Crystallographically preferred oriented TiO2 nanotube arrays for efficient photovoltaic energy conversion[J]. Energy & Environmental Science,2012,5(7):7989-7995.
[22] ARIOSA D,ELHORDOY F,DALCHIELE E A,et al. Texture vs morphology in ZnO nano-rods:on the X-ray diffraction characterization of electrochemically grown samples[J]. Journal of Applied Physics,2011,110(12):124901-124909.
[23] MA Q,LI M,HU Z,et al. Enhancement of the bioactivity of titanium oxide nanotubes by precalcification[J]. Materials Letters,2008,62(17/18):3035-3038.
[24] ROHANIZADEH R,ALSADEQ M,LEGEROS R Z. Prepara-tion of different forms of titanium oxide on titanium surface:effects on apatite deposition[J]. J Biomed Mater Res A,2004,71(2):343-352.
[25] SVETINA M,COLOMBI C L,SBAIZERO O,et al. Deposition of calcium ions on rutile (110):a first-principles investigation[J]. Acta Materialia,2001,49(12):2169-2177.
[26] CHANG M C,TANAKA J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde[J]. Biomaterials,2002,23(24):4811-4818.
[27] ZHANG H,LIU X,LI Y,et al. {001} facets dominated anatase TiO2:morphology,formation/etching mechanisms and perfor-mance[J]. Science China Chemistry,2012,56(4):402-417.
[1] 李朋, 赵昆渝, 郭军, 张晓娟, 戴丹, 黄峰. TiO2纳米孔到纳米管结构转变的因素及其机理研究[J]. 材料工程, 2014, 0(1): 58-63,74.
[2] 薛晋波, 李雪方, 梁伟, 王红霞. CdSe/TiO2复合薄膜的制备及光电性能研究[J]. 材料工程, 2013, 0(1): 21-24.
[3] 侯峰, 阴育新, 谭欣, 赵林. 阳极氧化TiO2纳米线生长研究[J]. 材料工程, 2010, 0(3): 79-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn