Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 146-152    DOI: 10.11868/j.issn.1001-4381.2017.000775
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纤维表面物理结构对复合材料界面剪切强度的影响
何烨1,2, 肖建文3, 姚烛威1,2, 符应飘1,2, 徐樑华2, 曹维宇1,2
1. 北京化工大学 有机无机复合材料国家重点实验室, 北京 100029;
2. 北京化工大学 碳纤维及功能高分子教育部重点实验室, 北京 100029;
3. 中国石油吉林石化研究院, 吉林 吉林 132021
Effect of surface physical structures on interfacial shear strength of carbon fibers reinforced epoxy resin composite
HE Ye1,2, XIAO Jian-wen3, YAO Zhu-wei1,2, FU Ying-piao1,2, XU Liang-hua2, CAO Wei-yu1,2
1. State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China;
2. Key Laboratory of Carbon Fiber and Functional Polymer(Ministry of Education), Beijing University of Chemical Technology, Beijing 100029, China;
3. CNPC Institute of Jilin Petrochemical Company, Jilin 132021, Jilin, China
全文: PDF(6882 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以3种典型碳纤维为研究对象,通过碳纤维断面形貌的扫描电镜分析,采用Photoshop对纤维截面特征进行有效提取并由Matlab编写程序,获得了碳纤维表面沟槽深度、宽度、个数等参数的统计信息,据此进一步计算了圆形度、沟槽深宽比、表面不规整度以及沟槽密集程度等物理量,建立了碳纤维表面物理沟槽结构的定量表征方法。在此基础上研究了原丝制备过程中的凝固环境对碳纤维表面物理结构的影响,并发现:当凝固浴温度由25℃升高至45℃时,碳纤维表面的沟槽深度及宽度均会逐渐减小,深宽比降低,沟槽形状逐渐趋于平缓,同时碳纤维的表面不规整度减小了约7.5%,而沟槽密集程度增加了约50%。采用上述具有不同表面物理结构特征的碳纤维作增强体制备复合材料,微滴脱粘测试结果表明:碳纤维复合材料的界面剪切强度(IFSS)随纤维表面的沟槽尺寸、沟槽深宽比及表面不规整度的增大而逐渐提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何烨
肖建文
姚烛威
符应飘
徐樑华
曹维宇
关键词 碳纤维表面结构沟槽结构界面剪切强度    
Abstract:The technique of quantitative characterization for the physical structure of the surface on PAN-based carbon fiber filaments was established through analyzing the cross sectional morphology which was obtained by scanning electron microscopic (SEM), followed by the image processing with Photoshop software and self-written Matlab program. The parameters such as the width, depth, and the number of surface groove structure were obtained by statistic calculation. Then the circularity, ratio of depth to width, density of groove structure along circle direction, and irregularity were also calculated to characterize the physical structure systematically. Furthermore, the groove structure of carbon fiber was regulated and controlled by adjusting the coagulation environment during the spinning process of PAN precursor, and it is found that the depth and width of groove structure on the surface of carbon fiber are decreased gradually, the shape of grooves also tends to flatten due to the decreased ratio of depth to width, the irregularity is decreased by about 7.5%, while the density of groove structure is increased by about 50% when the temperature of coagulation bath is increased from 25℃ to 45℃. The above carbon fibers with different surface physical structures were used as reinforcements to prepare composites, the results of microdroplet debonding test indicate that the interfacial shear strength (IFSS) of composites is increased with the increasing of groove size and aspect ratio, as well as the surface irregularity of carbon fibers.
Key wordscarbon fiber    surface structure    groove structure    interfacial shear strength
收稿日期: 2017-06-17      出版日期: 2019-02-21
中图分类号:  TQ342  
通讯作者: 曹维宇(1972-),男,教授,博士,研究方向:高性能碳纤维制备科学基础与技术研究,联系地址:北京市朝阳区北三环东路15号北京化工大学碳纤维楼(100029),E-mail:caowy@mail.buct.edu.cn     E-mail: caowy@mail.buct.edu.cn
引用本文:   
何烨, 肖建文, 姚烛威, 符应飘, 徐樑华, 曹维宇. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47(2): 146-152.
HE Ye, XIAO Jian-wen, YAO Zhu-wei, FU Ying-piao, XU Liang-hua, CAO Wei-yu. Effect of surface physical structures on interfacial shear strength of carbon fibers reinforced epoxy resin composite. Journal of Materials Engineering, 2019, 47(2): 146-152.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000775      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/146
[1] 彭公秋,杨进军,曹正华,等. 碳纤维增强树脂基复合材料的界面[J]. 材料导报, 2011, 25(7):1-4. PENG G Q, YANG J J, CAO Z H, et al. The interface of carbon fiber reinforced resin matrix composite[J]. Materials Review, 2011, 25(7):1-4.
[2] 杨景锋,王齐华,杨丽君,等. 纤维增强聚合物基复合材料的界面性能[J]. 高分子材料科学与工程, 2005, 21(3):6-10. YANG J F, WANG Q H, YANG L J, et al. Interfacial properties of fiber-reinforced polymer composites[J]. Polymer Materials Science and Engineering, 2005, 21(3):6-10.
[3] 张敏. 碳纤维增强树脂基复合材料界面结合强度关键影响因素研究[D]. 济南:山东大学, 2010. ZHANG M. Study on the key factors of interfacial bonding strength of carbon fiber reinforced resin composites[D]. Jinan:Shandong University, 2010.
[4] QIAN X, ZHI J H, CHEN L Q, et al. Effect of low current density electrochemical oxidation on the properties of carbon fiber-reinforced epoxy resin composites[J]. Surface & Interface Analysis, 2013, 45(5):937-942.
[5] SONG W, GU A J, LIANG G Z, et al. Effect of the surface roughness on interfacial properties of carbon fibers reinforced epoxy resin composites[J]. Applied Surface Science, 2011, 257(9):4069-4074.
[6] 张均,李常清,赵振文,等. 液/固转化过程对PAN纤维晶态和表面结构的影响[C]//中国宇航学会第十四届全国复合材料学术会议论文集. 宜昌:中国宇航学会, 2006:164-167. ZHANG J, LI C Q, ZHAO Z W, et al. Effect of liquid-solid conversion on crystal and surface stucture of polyacrylonitrile fiber[C]//China Aerospace Society Proceedings of the 14th National Conference on Composite Materials. Yichang:China Aerospace Society, 2006:164-167.
[7] 葛曷一. 聚丙烯腈原丝与碳纤维结构相关性研究[D]. 济南:山东大学, 2007. GE H Y. Study on the structural correlation between polyacrylonitrile precursor and carbon fiber[D]. Jinan:Shandong University, 2007.
[8] YAO Y, CHEN S H. The effects of fiber's surface roughness on the mechanical properties of fiber-reinforced polymer composites[J]. Journal of Composite Materials, 2013, 47(23):2909-2923.
[9] 李东风,王浩静,贺福,等. T300和T700炭纤维的结构与性能[J]. 新型炭材料, 2007, 22(1):59-64. LI D F, WANG H J, HE F, et al. Structure and properties of T300 and T700 carbon fibers[J]. New Carbon Materials, 2007, 22(1):59-64.
[10] 赵学莹. 国产碳纤维组织结构及其复合材料界面结构与性能表征[D]. 哈尔滨:哈尔滨工业大学, 2010. ZHAO X Y. Characterization on structure of China-made carbon fiber and interfacial structure and properties of its composite[D]. Harbin:Harbin Institute of Technology, 2010.
[11] QIAN X, ZOU R F, OUYANG Q, et al. Surface structural evolvement in the conversion of polyacrylonitrile precursors to carbon fibers[J]. Applied Surface Science, 2015, 327:246-252.
[12] 郭云霞,刘杰,梁节英. 电化学改性PAN基碳纤维表面及其机理探析[J]. 无机材料学报, 2009, 24(4):853-858. GUO Y X, LIU J, LIANG J Y. Modification mechanism of the surface-treated PAN-based carbon fiber by electrochemical oxidation[J].Journal of Inorganic Materials,2009,24(4):853-858.
[13] XIE J F, XIN D W, CAO H Y, et al. Improving carbon fiber adhesion to polyimide with atmospheric pressure plasma treatment[J]. Surface & Coatings Technology, 2011, 206(2/3):191-201.
[14] 郑斌,黄娜,陈聪慧,等. 碳纤维表面物理特征图像处理方法[J]. 宇航材料工艺, 2010, 40(2):102-105. ZHENG B, HUANG N, CHEN C H, et al. Quantitative image processing method for SEM micrographs of carbon fiber[J]. Aerospace Materials & Technology, 2010, 40(2):102-105.
[15] 郑斌,陈聪慧,黄娜,等. 碳纤维表面微观结构的定量化表征方法[J]. 宇航材料工艺, 2012, 42(2):103-107. ZHENG B, CHEN C H, HUANG N, et al. Quantitative image processing method for SEM micrographs of carbon fiber[J]. Aerospace Materials & Technology, 2012, 42(2):103-107.
[16] 贺福. 碳纤维及其应用技术[M]. 北京:化学工业出版社, 2004. HE F. Carbon fiber and its application technology[M]. Beijing:Chemical Industry Press, 2004.
[1] 于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
[2] 王迎芬, 刘刚, 彭公秋, 李韶亮, 谢富原. 国产T700级碳纤维/双马来酰亚胺树脂复合材料界面性能[J]. 材料工程, 2018, 46(4): 140-145.
[3] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[4] 许良, 费昺强, 马少华, 回丽, 黄国栋. 湿热环境下复合材料层板拉-压性能[J]. 材料工程, 2018, 46(3): 124-130.
[5] 李闯, 李伟, 王明宇, 王柏臣, 冯博文, 李勃翰, 李强. 功能化氧化石墨烯改性双马树脂及其复合材料[J]. 材料工程, 2018, 46(12): 48-53.
[6] 许健, 竺培显, 韩朝辉, 曹勇, 周生刚. 表面处理对碳纤维基β-PbO2电极性能的影响[J]. 材料工程, 2018, 46(1): 125-132.
[7] 赵雄伟, 臧充光, 焦清介, 马庆坤. Cu-CF/EP复合材料导电与阻尼性能研究[J]. 材料工程, 2017, 45(9): 45-51.
[8] 钟翔屿, 张代军, 包建文, 李伟东. 热塑性树脂含量对CCF800H碳纤维环氧复合材料Ⅰ型层间断裂韧度的影响[J]. 材料工程, 2017, 45(8): 55-61.
[9] 李潭, 顾轶卓, 王绍凯, 李敏, 张佐光. 碳纤维丝束起毛量测试方法[J]. 材料工程, 2017, 45(7): 84-90.
[10] 雷帅, 张校, 钟珊, 刘正博, 曹维宇, 徐樑华. 聚丙烯腈热稳定化纤维的裂解行为[J]. 材料工程, 2017, 45(5): 59-63.
[11] 钟云娇, 边文凤. PAN基碳纤维微晶结构对拉伸强度的影响[J]. 材料工程, 2017, 45(12): 37-42.
[12] 马少华, 费昺强, 许良, 回丽. 热氧老化对碳纤维双马树脂基复合材料性能的影响[J]. 材料工程, 2017, 45(12): 50-57.
[13] 宋磊, 陈纪强, 范汶鑫, 王成国. 电化学处理对碳纤维表面加载碳纳米管的影响机理[J]. 材料工程, 2017, 45(11): 15-22.
[14] 吴波, 郑帼, 孙玉, 崔莹, 吴炳洋. 有机电解液电化学改性PAN基碳纤维的表面性能[J]. 材料工程, 2016, 44(9): 52-57.
[15] 乔月月, 袁剑民, 费又庆. 微滴包埋拉出法测定复合材料界面剪切强度的影响因素分析[J]. 材料工程, 2016, 44(7): 88-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn