Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 148-154    DOI: 10.11868/j.issn.1001-4381.2017.000815
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
预应变对奥氏体不锈钢力学行为的影响及本构模型的构建
李凯尚1, 彭剑1,2, 彭健1
1. 常州大学 机械工程学院, 江苏 常州 213164;
2. 常州大学 江苏省绿色过程装备重点实验室, 江苏 常州 213164
Influence of Pre-strain on Mechanical Behavior of Austenitic Stainless Steel and Construction of Constitutive Models
LI Kai-shang1, PENG Jian1,2, PENG Jian1
1. School of Mechanical Engineering, Changzhou University, Changzhou 213164, Jiangsu, China;
2. Jiangsu Key Laboratory of Green Process Equipment, Changzhou University, Changzhou 213164, Jiangsu, China
全文: PDF(3480 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以不同预应变量的316L奥氏体不锈钢为对象,研究材料在温度为293~573K和应变速率为0.0005~0.01s-1下的力学性能以及预应变对力学行为的影响。结果表明:随着预应变量的增加,316L不锈钢的屈服强度显著增大,伸长率明显降低,抗拉强度基本保持不变;并且其应变速率敏感性、温度敏感性和应变硬化均会受到预应变的抑制。预应变对力学性能的影响与在预应变过程中产生的位错塞积、机械孪晶有关。根据材料力学行为在不同预应变量下的变化规律,构建了考虑预应变的Modified Johnson Cook(MJC)和Modified Zerilli-Armstrong(MZA)本构模型,由实验对比发现,两种改进的本构模型预测结果和实验数据相吻合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凯尚
彭剑
彭健
关键词 316L奥氏体不锈钢预应变拉伸行为本构模型    
Abstract:Mechanical behavior of 316L austenitic stainless steel with different pre-strains was studied at different temperatures of 293-573K and strain rates of 0.0005-0.01s-1, and the effect of pre-strain on mechanical behavior was investigated. The results show that yield strength of 316L stainless steel increases and elongation decreases evidently with pre-strain, and tensile strength basically remains constant with pre-strain. In addition, strain rate sensitivity, temperature sensitivity and strain hardening of 316L stainless steel are inhibited by pre-strain. The effect of pre-strain on mechanical behavior is related to dislocation accumulation and mechanical twin produced in the pre-strain process. According to the variation rule of mechanical behavior with pre-strain, the constitutive models considering pre-strain including Modified Johnson Cook (MJC) and Modified Zerilli-Armstrong (MZA) were constructed. The comparison of experimental results shows that the predicted results of two modified models are in agreement with the experimental data.
Key words316L austenitic stainless steel    pre-strain    tensile behavior    constitutive model
收稿日期: 2017-06-30      出版日期: 2018-11-19
中图分类号:  TG115  
基金资助: 
通讯作者: 彭剑(1987-),男,博士,讲师,研究方向:先进材料与结构力学行为,联系地址:江苏省常州市武进区科教城机械石油楼(213164),E-mail:joepengjian@163.com     E-mail: joepengjian@163.com
引用本文:   
李凯尚, 彭剑, 彭健. 预应变对奥氏体不锈钢力学行为的影响及本构模型的构建[J]. 材料工程, 2018, 46(11): 148-154.
LI Kai-shang, PENG Jian, PENG Jian. Influence of Pre-strain on Mechanical Behavior of Austenitic Stainless Steel and Construction of Constitutive Models. Journal of Materials Engineering, 2018, 46(11): 148-154.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000815      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/148
[1] LO K H,SHEK C H,LAI J K L. Recent developments in stainless steels[J].Materials Science and Engineering R,2009,65(4/6):39-104.
[2] 郑津洋,郭阿宾,缪存坚,等. 奥氏体不锈钢深冷容器室温应变强化技术[J].压力容器,2010,27(8):28-32. ZHENG J Y,GUO A B,MIAO C J,et al.Cold stretching technique for austenitic stainless steel cryogenic pressure vessels[J].Pressure Vessel Technology,2010,27(8):28-32.
[3] 毛博文,孙晓屿,王武荣,等.预应变和应变速率对HC340LA低合金高强钢力学性能的影响[J].塑性工程学报,2014,21(1):7-12. MAO B W,SUN X Y,WANG W R,et al.Effect of pre-strain and strain rate on mechanical properties of HC340LA high strength low alloy steel[J].Journal of Plasticity Engineering,2014,21(1):7-12.
[4] 韩豫, 陈学东, 刘全坤,等. 应变强化奥氏体不锈钢力学行为研究及应用[J]. 中国机械工程,2011,22(21):2633-2637. HAN Y,CHEN X D,LIU Q K,et al.Study and application on mechanical behavior of austenitic stainless steels based on cold stretching technology[J].China Mechanical Engineering,2011,22(21):2633-2637.
[5] 李慧中,李洲,梁霄鹏,等. 预变形对Al-Cu-Mn-Mg-Ag合金的组织与力学性能的影响[J]. 航空材料学报,2009,29(2):29-33. LI H Z,LI Z,LIANG X P,et al.Effect of predeformation on microstructures and mechanical properties of Al-Cu-Mn-Mg-Ag aluminum alloy[J]. Journal of Aeronautical Materials,2009,29(2):29-33.
[6] LEE W S,LIN C F,CHEN T H,et al.High temperature microstructural evolution of 304L stainless steel as function of pre-strain and strain rate[J].Materials Science and Engineering:A,2010,527(13/14):3127-3137.
[7] 吴珞菲,成强,李铸国. 预变形对304L焊接组织的影响[J]. 材料工程,2017,45(1):7-13. WU L F,CHENG Q,LI Z G.Effect of prior deformation on welding microstructure of steel 304L[J]. Journal of Materials Engineering,2017,45(1):7-13.
[8] CHOI M,HOU J,MÁTHIS K,et al.Tensile behavior of hydrogen-charged 316L stainless steel at elevated temperatures[J].Materials Science and Engineering:A,2014,595(5):165-172.
[9] HE A,XIE G L,ZHANG H L,et al.A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel[J].Materials & Design,2013,52:677-685.
[10] LIN Y C,CHEN X M.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & Design,2011,32(4):1733-1759.
[11] ZHANG D N,SHANGGUAN Q Q,XIE C J,et al.A modified Johnson-Cook model of dynamic tensile behaviors for 7075-T6 aluminum alloy[J]. Journal of Alloys and Compounds,2015,619:186-194.
[12] LI H Y,WANG X F,WEI D D,et al.A comparative study on modified Zerilli-Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel[J]. Materials Science and Engineering:A,2012,536(1):216-222.
[13] HE A,XIE G L,ZHANG H L,et al.A modified Zerilli-Armstrong constitutive model to predict hot deformation behavior of 20CrMo alloy steel[J].Materials & Design,2014,56:122-127.
[14] PENG J,ZHOU C Y,DAI Q,et al.An improved constitutive description of tensile behavior for CP-Ti at ambient and intermediate temperatures[J].Materials & Design,2013,50:968-976.
[15] 张施琦,冯定,张跃,等. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程,2016,44(5):15-21. ZHANG S Q,FENG D,ZHANG Y,et al.Hot deformation behavior and constitutive model of advanced ultra-high strength hot stamping steel[J].Journal of Materials Engineering,2016,44(5):15-21.
[16] 王进,褚忠,张琦.38MnVS6非调质钢两种高温本构模型的对比[J]. 材料工程,2014(2):81-86. WANG J,CHU Z,ZHANG Q.A comparative study of two high-temperature constitutive models of 38MnVS6 microalloyed forging steel[J].Journal of Materials Engineering,2014(2):81-86.
[17] PENG J,LI K S,PENG J,et al.The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel[J].Materials Science and Technology,2018,34(5):547-560.
[18] PENG Y,GONG J,JIANG Y,et al.The effect of plastic pre-strain on low-temperature surface carburization of AISI 304 austenitic stainless steel[J].Surface and Coatings Technology,2016,304:16-22.
[19] JI H,PARK I J,LEE S M,et al.The effect of pre-strain on hydrogen embrittlement in 310S stainless steel[J].Journal of Alloys and Compounds,2014,598:205-212.
[20] JONAS J J,SELLARS C M,TEGART W J M.Strength and structure under hot-working conditions[J].International Materials Reviews,1969,14(1):1-24.
[21] WANG S H,ZHANG Y,CHEN W.Room temperature creep and strain-rate-dependent stress-strain behavior of pipeline steels[J].Journal of Materials Science,2001,36(8):1931-1938.
[22] NEERAJ T,HOU D H,DAEHN G S,et al.Phenomenological and microstructural analysis of room temperature creep in titanium alloys[J]. Acta Materialia,2000,48(6):1225-1238.
[23] KAMEYAMA T, MATSUNAGA T, SATO E, et al.Suppression of ambient-temperature creep in CP-Ti by cold-rolling[J].Materials Science and Engineering:A,2009,510/511:364-367.
[24] LIN Y C,CHEN X M,LIU G.A modified Johnson-Cook model for tensile behaviors of typical high-strength alloy steel[J].Materials Science and Engineering:A,2010,527(26):6980-6986.
[25] SAMANTARAY D,MANDAL S,BORAH U,et al.A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel[J].Materials Science and Engineering:A,2009,526(1/2):1-6.
[26] ROKNI M R,ZAREI-HANZAKI A,ROOSTAEI A A,et al.Constitutive base analysis of a 7075 aluminum alloy during hot compression testing[J].Materials & Design,2011,32(10):4955-4960.
[1] 孙挺, 闫永明, 何肖飞, 尉文超, 杜玉婧. Cr-Mo-B系机械工程用钢高温流变行为及热加工图[J]. 材料工程, 2019, 47(9): 55-60.
[2] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[3] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[4] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[5] 袁武华, 龚雪辉, 孙永庆, 梁剑雄. 0Cr16Ni5Mo低碳马氏体不锈钢的热变形行为及其热加工图[J]. 材料工程, 2016, 44(5): 8-14.
[6] 张施琦, 冯定, 张跃, 洪继要. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44(5): 15-21.
[7] 张勇, 谢卫红, 刘宏伟, 张峰. 聚氨酯蜂窝纸板动力学性能及其本构模型[J]. 材料工程, 2015, 43(5): 27-32.
[8] 骆晨, 蔡健平, 陈亚争, 刘明, 赵亮亮, 孙志华, 汤智慧, 陆峰. 外加应变对航空有机涂层防护性能的影响[J]. 材料工程, 2014, 0(5): 1-6.
[9] 孙涛, 梁晋, 郭翔, 李磊刚, 任茂栋. 基于DIC的预应变下铜/铝复层板各向异性性能检测与研究[J]. 材料工程, 2014, 0(5): 78-85.
[10] 刘庆生, 何文, 曾芳金, 薛济来. 不同铝电解时间下阴极炭块的损伤特性研究[J]. 材料工程, 2013, 0(7): 92-96.
[11] 王韬, 曹伟, 颜悦, 厉蕾. 聚碳酸酯熔体挤压流变研究[J]. 材料工程, 2013, 0(5): 73-77.
[12] 李冬勤, 徐磊, 黄兴民, 戴光泽. 7A04铝合金动态再结晶的临界应变研究[J]. 材料工程, 2013, 0(4): 23-27.
[13] 张阳, 臧顺来, 郭翔, 梁晋, 郭成. 基于数字散斑应变测量法的薄板各向异性力学性能研究[J]. 材料工程, 2012, 0(4): 6-11.
[14] 李建华, 吴开明, 邱金鳌. 预应变对Nb微合金化09MnNiDR低温钢高温塑性的影响[J]. 材料工程, 2012, 0(11): 82-85,91.
[15] 陈刘定, 童小燕, 姚磊江, 程起有. 开孔对平纹编织C/SiC陶瓷基复合材料力学行为的影响[J]. 材料工程, 2009, 0(9): 71-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn