Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (1): 42-49    DOI: 10.11868/j.issn.1001-4381.2017.000820
  综述 本期目录 | 过刊浏览 | 高级检索 |
生物基呋喃衍生物在有机涂层中的应用
彭晚军1,2, 丁纪恒1,*(), 陈浩1,3, 余海斌1,*()
1 中国科学院 宁波材料技术与工程研究所 中国科学院海洋新材料与应用技术重点实验室, 浙江 宁波 315201
2 湖南大学 材料科学与工程学院, 长沙 410006
3 宁波大学 材料科学与化学工程学院, 浙江 宁波 315201
Application of furan derivatives in organic coatings
Wan-jun PENG1,2, Ji-heng DING1,*(), Hao CHEN1,3, Hai-bin YU1,*()
1 Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410006, China
3 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315201, Zhejiang, China
全文: PDF(3220 KB)   HTML ( 34 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着环境保护意识的增强,减少石油基材料的使用成为社会的共识,生物基呋喃类衍生物因其独特的性质引起了研究人员的极大兴趣,其在生物基涂层、自修复涂层和光固化涂层等领域有着极大的使用潜力,但在我国尚未有成熟的研究。基于此,本文对其在生物基涂层、自修复涂层和其他涂层的应用等方面进行了总结,介绍和分析了国内外呋喃类衍生物在有机涂层方面的最近研究成果,并指出目前呋喃类衍生物的大规模应用所存在的困难:生产成本的居高不下。最后对呋喃衍生物的其他应用,如呋喃甲基缩水甘油醚作为环氧涂层的活性稀释剂取代商业化的石油基活性稀释剂以及利用呋喃环的大π键非共价改性石墨烯再制备石墨烯/有机涂层复合材料等进行了分析和展望。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭晚军
丁纪恒
陈浩
余海斌
关键词 呋喃类衍生物有机涂层自修复生物基    
Abstract

With the increase in environmental awareness, reducing the use of petroleum-based materials has become a social consensus, so the researchers have been greatly interested in the bio-based furan derivatives which have a great potential for the applications in bio-based coatings, self-healing coatings and photocurable coatings because of their unique properties. However, there is no mature study in our country. Based on this, the application in bio-based coatings, self-repair coatings and other coatings was summarized in this paper, and then the recent research achievements of furan derivatives in organic coatings at home and abroad were introduced and analyzed, and the difficulties in the large-scale application of furan derivatives were pointed out as follows:the high production cost. Finally, other applications of furan derivatives were analysed and prospected, for example, utilizing furan methyl glycidyl ether as reactive diluent of epoxy coatings to replace commercial petroleum-based reactive diluent and non-covalent modifying graphene using the delocalized π bond of furan ring for preparing graphene/organic coatings composites.

Key wordsfuran derivatives    organic coating    self-healing    bio-based
收稿日期: 2017-06-28      出版日期: 2019-01-16
中图分类号:  TQ619.6  
基金资助:中科院旗舰人才引进(Y30226RA11)
通讯作者: 丁纪恒,余海斌     E-mail: dingjh@nimte.ac.cn;haibinyu@nimte.ac.cn; dingjh@nimte.ac.cn
作者简介: 丁纪恒(1989-), 男, 高级助理, 硕士, 研究方向为生物基材料、防腐涂料, 联系地址:浙江省宁波市镇海区中官西路1219号宁波材料所表面事业部(315201), E-mail:dingjh@nimte.ac.cn
余海斌(1965-), 男, 研究员, 博士, 研究方向为环境友好有机涂料、生物基材料, 联系地址:浙江省宁波市镇海区中官西路1219号宁波材料所表面事业部(315201), E-mail:haibinyu@nimte.ac.cn
引用本文:   
彭晚军, 丁纪恒, 陈浩, 余海斌. 生物基呋喃衍生物在有机涂层中的应用[J]. 材料工程, 2019, 47(1): 42-49.
Wan-jun PENG, Ji-heng DING, Hao CHEN, Hai-bin YU. Application of furan derivatives in organic coatings. Journal of Materials Engineering, 2019, 47(1): 42-49.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000820      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/42
Fig.1  全呋喃基可再生热固性树脂的合成[26]
Monomer Catalyst Vacuum processing/h Mn/(g·mol-1) Tg/℃ Tdeg, 5%/℃ Tdeg, max/℃
FDCA TBO 4 2500 80 299 342
FDCA Sn(Oct2) 4 3700 96 296 342
FDCA ZrBO 4 2000 74 276 343
DM-FDCA TBO 4 2200 71 280 334
DM-FDCA Sn(Oct2) 4 7000 109 301 335
DM-FDCA ZrBO 4 2400 81 277 304
DM-FDCA Sn(Oct2) 8 13000 113 - -
Table 1  单体和催化剂对P23BF的数均分子量及热性能的影响
Fig.2  PMIMA和PFuMA的结构及自修复效果[40]
Fig.3  DGEBA-FGE质量比为60:40涂层的耐腐蚀性[44]
(a)1天后;(b)3天后;(c)4天后;(d)5天后
Fig.4  三种愈合剂的结构[45-46]
1 MA S Q , LI T T , LIU X Q , et al. Research progress on bio-based thermosetting resins[J]. Polymer International, 2016, 65 (2): 164- 173.
doi: 10.1002/pi.2016.65.issue-2
2 CAI W Q , CHENG B , ZHANG G X , et al. Developing the green chemistry principles[J]. Progress in Chemistry, 2009, 21 (10): 2001- 2008.
3 郑宁来. 2018年全球生物基材料和化学品产能将超740万t[J]. 石化技术与应用, 2015, (3): 268- 268.
3 ZHENG N L . Global bio-based materials and chemicals capacity will exceed 7.4 million t in 2018[J]. Petrochemical Technology & Application, 2015, (3): 268- 268.
4 刁晓倩, 翁云宣, 黄志刚, 等. 国内生物基材料产业发展现状[J]. 生物工程学报, 2016, 32 (6): 715- 725.
4 DIAO X Q , WENG Y X , HUANG Z G , et al. Current status of bio-based materials industry in China[J]. Chinese Journal of Biotechnology, 2016, 32 (6): 715- 725.
5 DIAO L C , SU K M , LI Z H , et al. Furan-based co-polyesters with enhanced thermal properties:poly(1, 4-butylene-co-1, 4-cyclohexanedimethylene-2, 5-furandicarboxylic acid)[J]. RSC Advances, 2016, 6 (33): 27632- 27639.
doi: 10.1039/C5RA27617A
6 SOLODILOV V I , GORBATKINA Y A , KUPERMAN A M . The effect of an active diluent on the properties of epoxy resin and unidirectional carbon-fiber-reinforced plastics[J]. Mechanics of Composite Materials, 2003, 39 (6): 493- 502.
doi: 10.1023/B:MOCM.0000010621.05492.bf
7 MANDAVI F , FORSYTH M , TAN M Y J . Techniques for testing and monitoring the cathodic disbondment of organic coatings:an overview of major obstacles and innovations[J]. Progress in Organic Coatings, 2017, 105, 163- 175.
doi: 10.1016/j.porgcoat.2016.11.034
8 MOLLER V B , DAM-JOHANSEN K , FRANKAER S M , et al. Acid-resistant organic coatings for the chemical industry:a review[J]. Journal of Coatings Technology & Research, 2017, 14 (2): 279- 306.
9 CHEN Q , LIU J , THUNDAT T , et al. Spatially resolved organic coating on clay minerals in bitumen froth revealed by atomic force microscopy adhesion mapping[J]. Fuel, 2017, 191, 283- 289.
doi: 10.1016/j.fuel.2016.11.091
10 CHANG C W , LU K T . Organic-inorganic hybrid linseed oil-based urethane oil wood coatings[J]. Journal of Applied Polymer Science, 2017, 134 (10): 44562.
11 BANDEIRA R M , VAN DRUNEN J , TREMILIOSI-FILHO G , et al. Polyaniline/polyvinyl chloride blended coatings for the corrosion protection of carbon steel[J]. Progress in Organic Coatings, 2017, 106, 50- 59.
doi: 10.1016/j.porgcoat.2017.02.009
12 ATTIA N F , MOUSSA M , SHETA A M F , et al. Synthesis of effective multifunctional textile based on silica nanoparticles[J]. Progress in Organic Coatings, 2017, 106, 41- 49.
doi: 10.1016/j.porgcoat.2017.02.006
13 JEONG J H , HAN Y C , YANG J H , et al. Waterborne polyurethane modified with poly(ethylene glycol) macromer for waterproof breathable coating[J]. Progress in Organic Coatings, 2017, 103, 69- 75.
doi: 10.1016/j.porgcoat.2016.10.004
14 CESUR S , KAHRAMAN T . Printing properties of polycaprolactone composite films[J]. Progress in Organic Coatings, 2016, 98, 10- 13.
doi: 10.1016/j.porgcoat.2016.04.022
15 PURI R G , KHANNA A S . Effect of cenospheres on the char formation and fire protective performance of water-based intumescent coatings on structural steel[J]. Progress in Organic Coatings, 2016, 92, 8- 15.
doi: 10.1016/j.porgcoat.2015.11.016
16 THOMAS K A , NAIR S , RAJESWARI R , et al. Electrochemical behaviour of PANi/polyurethane antifouling coating in salt water studied by electrochemical impedance spectroscopy[J]. Progress in Organic Coatings, 2015, 89, 267- 270.
doi: 10.1016/j.porgcoat.2015.09.007
17 顾林, 丁纪恒, 余海斌. 石墨烯用于金属腐蚀防护的研究[J]. 化学进展, 2016, 28 (5): 737- 743.
17 GU L , DING J H , YU H B . Research in Graphene-Based Anticorrosion Coatings[J]. Progress in Chemistry, 2016, 28 (5): 737- 743.
18 SHI X M , NGUYEN T A , SUO Z Y , et al. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating[J]. Surface & Coatings Technology, 2009, 204 (3): 237- 245.
19 DUMAS L , BONNAUD L , OLIVIER M , et al. Arbutin-based benzoxazine:en route to an intrinsic water soluble biobased resin[J]. Green Chemistry, 2016, 18 (18): 4954- 4960.
doi: 10.1039/C6GC01229A
20 RIVERO G , FASCE L A , CERE S M , et al. Furan resins as replacement of phenolic protective coatings:structural, mechanical and functional characterization[J]. Progress in Organic Coatings, 2014, 77 (1): 247- 256.
doi: 10.1016/j.porgcoat.2013.09.015
21 RIVERO G , VAZQUEZ A , MANFREDI L B . Synthesis and characterization of nanocomposites based on a furan resin[J]. Journal of Applied Polymer Science, 2010, 117 (3): 1667- 1673.
22 FAN C C , PANG C C , LIU X H , et al. Self-curing furan-based elastic thermosets derived from citric acid[J]. Green Chemistry, 2016, 18 (23): 6320- 6328.
doi: 10.1039/C6GC02166B
23 HU F S , LA SCALA J J , SADLER J M , et al. Synthesis and characterization of thermosetting furan-based epoxy systems[J]. Macromolecules, 2014, 47 (10): 3332- 3342.
doi: 10.1021/ma500687t
24 SOUSA A F , VILELA C , FONSECA A C , et al. Biobased polyesters and other polymers from 2, 5-furandicarboxylic acid:a tribute to furan excellency[J]. Polymer Chemistry, 2015, 6 (33): 5961- 5983.
doi: 10.1039/C5PY00686D
25 周佳栋, 曹飞, 余作龙, 等. 生物基聚酯单体2, 5-呋喃二甲酸的制备及应用研究进展[J]. 高分子学报, 2016, (1): 1- 13.
25 ZHOU J D , CAO F , YU Z L , et al. Research progress in preparation and application of bio-based 2, 5-furandicarboxylic acid as polyester monomer[J]. Acta Polymerica Sinica, 2016, (1): 1- 13.
26 HU F S , YADAV S K , LA SCALA J J , et al. Preparation and characterization of fully furan-based renewable thermosetting epoxy-amine systems[J]. Macromolecular Chemistry and Physics, 2015, 216 (13): 1441- 1446.
doi: 10.1002/macp.v216.13
27 GUBBELS E , JASINSKA-WALC L , KONING C E . Synthesis and characterization of novel renewable polyesters based on 2, 5-furandicarboxylic acid and 2, 3-butanediol[J]. Journal of Polymer Science Part A, 2013, 51 (4): 890- 898.
doi: 10.1002/pola.26446
28 WILSENS C H R M , WULLEMS N J M , GUBBELS E , et al. Synthesis, kinetics, and characterization of bio-based thermosets obtained through polymerization of a 2, 5-furandicarboxylic acid-based bis(2-oxazoline) with sebacic acid[J]. Polymer Chemistry, 2015, 6 (14): 2707- 2716.
doi: 10.1039/C4PY01609B
29 LIU S , GU L , ZHAO H C , et al. Corrosion resistance of graphene-reinforced waterborne epoxy coatings[J]. Journal of Materials Science & Technology, 2016, 32 (5): 425- 431.
30 QIU S H , CHEN C , CUI M J , et al. Corrosion protection performance of waterborne epoxy coatings containing self-doped polyaniline nanofiber[J]. Applied Surface Science, 2017, 407, 213- 222.
doi: 10.1016/j.apsusc.2017.02.142
31 CHO S H , WHITE S R , BRAUN P V . Self-healing polymer coatings[J]. Advanced Materials, 2009, 21 (6): 645- 649.
doi: 10.1002/adma.v21:6
32 SCHELTJENS G , DIAZ M M , BRANCART J , et al. A self-healing polymer network based on reversible covalent bonding[J]. Reactive & Functional Polymers, 2013, 73 (2): 413- 420.
33 YIN X Y , LIU Z L , WANG D A , et al. Bioinspired self-healing organic materials:chemical mechanisms and fabrications[J]. Journal of Bionic Engineering, 2015, 12 (1): 1- 16.
doi: 10.1016/S1672-6529(14)60095-0
34 ELSCHNER T , OBST F , STANA-KLEINSCHEK K , et al. Synthesis and film formation of furfuryl-and maleimido carbonic acid derivatives of dextran[J]. Carbohydrate Polymers, 2017, 161, 1- 9.
doi: 10.1016/j.carbpol.2016.12.038
35 CHEN X X , DAM M A , ONO K , et al. A thermally re-mendable cross-linked polymeric material[J]. Science, 2002, 295 (5560): 1698- 1702.
doi: 10.1126/science.1065879
36 KARAMI Z , ZOHURIAAN-MEHR M J , ROSTAMI A . Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart[J]. Journal of CO2 Utilization, 2017, 18, 294- 302.
doi: 10.1016/j.jcou.2017.02.009
37 POSTIGLIONE G , TURRI S , LEVI M . Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels-Alder reaction[J]. Progress in Organic Coatings, 2015, 78, 526- 531.
doi: 10.1016/j.porgcoat.2014.05.022
38 FU G H , YUAN L , LIANG G Z , et al. Heat-resistant polyurethane films with great electrostatic dissipation capacity and very high thermally reversible self-healing efficiency based on multi-furan and liquid multi-maleimide polymers[J]. Journal of Materials Chemistry A, 2016, 4 (11): 4232- 4241.
doi: 10.1039/C6TA00953K
39 BARTHEL M J , RUDOLPH T , TEICHLER A , et al. Self-healing materials via reversible crosslinking of poly(ethylene oxide)-block-poly(furfuryl glycidyl ether) (PEO-b-PFGE) block copolymer films[J]. Advanced Functional Materials, 2013, 23 (39): 4921- 4932.
doi: 10.1002/adfm.v23.39
40 ARUNBABU D , NOH S M , NAM J H , et al. Thermoreversible self-healing networks based on a tunable polymethacrylate crossslinker having pendant maleimide groups[J]. Macromolecular Chemistry and Physics, 2016, 217 (19): 2191- 2198.
doi: 10.1002/macp.v217.19
41 马宇, 任亮, 冯启, 等. 单组分聚脲材料在寒冷地区某大坝溢流面防护中的应用[J]. 中国水利水电科学研究院学报, 2017, 15 (1): 49- 53.
41 MA Y , REN L , FENG Q , et al. Application of one component polyurea material in the overflow surface for the dam protection in cold regions[J]. Journal of China Institute of Water Resources and Hydropower Research, 2017, 15 (1): 49- 53.
42 余建平. 暴露型单组分聚氨酯(脲)防水涂膜及其应用[J]. 中国建筑防水, 2010, (22): 25- 28.
doi: 10.3969/j.issn.1007-497X.2010.22.006
42 YU J P . Exposed one component polyurethane waterproofing coating and its application[J]. China Building Waterproofing, 2010, (22): 25- 28.
doi: 10.3969/j.issn.1007-497X.2010.22.006
43 KOTTERITZSCH J , STUMPF S , HOEPPENER S , et al. One-component intrinsic self-healing coatings based on reversible crosslinking by Diels-Alder cycloadditions[J]. Macromolecular Chemistry and Physics, 2013, 214 (14): 1636- 1649.
doi: 10.1002/macp.v214.14
44 PRATAMA P A , PETERSON A M , PALMESE G R . Diffusion and reaction phenomena in solution-based healing of polymer coatings using the Diels-Alder reaction[J]. Macromolecular Chemistry and Physics, 2012, 213 (2): 173- 181.
doi: 10.1002/macp.201100407
45 PRATAMA P A , PETERSON A M , PALMESE G R . The role of maleimide structure in the healing of furan-functionalized epoxy amine thermosets[J]. Polymer Chemistry, 2013, 4 (18): 5000- 5006.
doi: 10.1039/c3py00084b
46 PRATAMA P A , SHARIFI M , PETERSON A M , et al. Room temperature self-healing thermoset based on the Diels-Alder reaction[J]. ACS Applied Materials & Interfaces, 2013, 5 (23): 12425- 12431.
47 FUHRMANN A , GOSTL R , WENDT R , et al. Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light[J]. Nature Communications, 2016, 7, 13623.
doi: 10.1038/ncomms13623
48 FREDRICH S , GOSTL R , HERDER M , et al. Switching diarylethenes reliably in both directions with visible light[J]. Angewandte Chemie-International Edition, 2016, 55 (3): 1208- 1212.
doi: 10.1002/anie.201509875
49 JEONG J , KIM B , SHIN S , et al. Synthesis and photo-polymerization of bio-based furanic compounds functionalized by 2-hydroxypropyl methacrylate group(s)[J]. Journal of Applied Polymer Science, 2013, 127 (4): 2483- 2489.
doi: 10.1002/app.37959
50 龙国宁, 黄小忠, 陈金. 碳纤维表面h-BN耐高温涂层的制备及表征[J]. 表面技术, 2015, 44 (9): 84- 88.
50 LONG G N , HUANG X Z , CHEN J . Preparation and characterization of h-BN high-temperature resistant coating on the surface of carbon fibers[J]. Surface Technology, 2015, 44 (9): 84- 88.
51 MILITZER C , KNOHL S , DZHAGAN V , et al. Deposition of an organic-inorganic hybrid material onto carbon fibers via the introduction of furfuryl alcohol into the atomic layer deposition process of titania and subsequent pyrolysis[J]. Journal of Vacuum Science & Technology A, 2017, 35 (1): 01B107.
52 黄坤, 王石发, 万厉. 糠醇缩水甘油醚稀释的环氧体系的性能研究[J]. 热固性树脂, 2009, 24 (5): 1- 5.
doi: 10.3969/j.issn.1002-7432.2009.05.001
52 HUANG K , WANG S F , WAN L . Study on properties of epoxy curing system with furfuryl glycidyl ether as diluent[J]. Thermosetting Resin, 2009, 24 (5): 1- 5.
doi: 10.3969/j.issn.1002-7432.2009.05.001
53 彭晚军, 丁纪恒, 夏伟军, 等. 生物基呋喃甲基缩水甘油醚对环氧树脂固化物性能的影响[J]. 塑料工业, 2017, 45 (8): 23- 26.
doi: 10.3969/j.issn.1005-5770.2017.08.006
53 PENG W J , DING J H , XIA W J , et al. Effect of bio-based furfuryl glycidyl ether on properties of epoxy resin curing[J]. China Plastics Industry, 2017, 45 (8): 23- 26.
doi: 10.3969/j.issn.1005-5770.2017.08.006
[1] 刘梓洋, 李杨, 刘兴江, 徐强. 自修复聚合物在电化学储能领域的研究进展[J]. 材料工程, 2021, 49(1): 1-10.
[2] 孟凡善, 李征, 丁昊昊, 王文健, 刘启跃. 油酸修饰纳米BN/TiN润滑添加剂的摩擦学性能研究[J]. 材料工程, 2020, 48(5): 160-167.
[3] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[4] 高亮, 霍红宇, 周典瑞, 张宝艳, 胡君. 基于动态共价化学树脂及复合材料的研究进展[J]. 材料工程, 2020, 48(11): 68-75.
[5] 吉海军, 乔荷, 王朝, 杨慧, 王润国, 张立群. 生物基合成橡胶的研究进展[J]. 材料工程, 2019, 47(12): 1-9.
[6] 沈自才, 夏彦, 丁义刚, 赵春晴, 杨艳斌. 4D打印及其关键技术[J]. 材料工程, 2019, 47(11): 11-18.
[7] 杨一林, 卢珣, 王巍巍, 蒋智杰. 热可逆自修复聚氨酯弹性体的制备及表征[J]. 材料工程, 2017, 45(8): 1-8.
[8] 骆晨, 蔡健平, 陈亚争, 刘明, 赵亮亮, 孙志华, 汤智慧, 陆峰. 外加应变对航空有机涂层防护性能的影响[J]. 材料工程, 2014, 0(5): 1-6.
[9] 吴雪梅, 周元康, 杨绿, 王陈向, 李屹, 陈建海. 纳米坡缕石润滑油添加剂对45#钢摩擦副的抗磨及自修复性能[J]. 材料工程, 2012, 0(4): 82-87.
[10] 杨绿,周元康,李屹,吴雪梅,陈建海,王陈向. 坡缕石/Ag复合纳米材料添加剂的自修复性能研究[J]. 材料工程, 2012, 0(3): 12-16.
[11] 杨绿, 周元康, 李屹, 朱湘宁, 张勇杰. 纳米坡缕石润滑油添加剂对灰铸铁HT200摩擦磨损性能的影响[J]. 材料工程, 2010, 0(4): 94-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn