Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 136-142    DOI: 10.11868/j.issn.1001-4381.2017.000852
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高比表面积、低密度块状Al2O3气凝胶的制备及表征
余煜玺1, 马锐1, 王贯春2, 张瑞谦2, 彭小明2
1. 厦门大学 材料学院 福建省特种先进材料重点实验室, 福建 厦门 361005;
2. 中国核动力研究设计院 反应堆燃料及材料重点实验室, 成都 610000
Preparation and characterization of Al2O3 bulk aerogel with high specific surface area and low density
YU Yu-xi1, MA Rui1, WANG Guan-chun2, ZHANG Rui-qian2, PENG Xiao-ming2
1. Fujian Key Laboratory of Advanced Materials, College of Materials, Xiamen University, Xiamen 361005, Fujian, China;
2. Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610000, China
全文: PDF(3034 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以仲丁醇铝(ASB)为前驱体,乙醇为溶剂,乙酸为催化剂,乙酰乙酸乙酯(Etac)为螯合剂,通过溶胶-凝胶和超临界干燥过程制备得到块状氧化铝气凝胶,并在不同温度下对其进行热稳定性分析。此外,通过SEM,XRD,FT-IR和N2吸附-脱附分析等测试研究了乙醇和乙酰乙酸乙酯的用量对氧化铝气凝胶微结构及比表面积的影响。结果表明:氧化铝气凝胶具有叶片状颗粒堆积形成的纳米多孔网络结构,比表面积高达744.5m2/g,密度低至0.063g/cm3,随着热处理温度升高,比表面积逐渐降低,1200℃热处理2h后依旧高达153.45m2/g;经不同温度热处理后,氧化铝气凝胶的叶片状多孔结构未发生明显变化,表明该氧化铝气凝胶具有高温稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余煜玺
马锐
王贯春
张瑞谦
彭小明
关键词 氧化铝气凝胶溶胶-凝胶螯合剂热处理比表面积    
Abstract:We report a facile approach to synthesize alumina aerogel through sol-gel reaction followed by supercritical drying, in which ASB is as co-precursors, EtOH as solvents, Etac as chelating reagent, HAc as catalysts. The as-prepared aerogel was treated at different temperatures.Moreover, the effect of the amount of ethanol and chelating agent ethylacetoacetate on the microstructures of aerogels and the changes of specific surface areas under different conditions were also discussed by SEM,XRD,FT-IR,TG-DTA and nitrogen adsorption-desorption. The results indicate that the monolithic alumina aerogel has nanoporous network structure consisted of randomly connected leaf-like particles, which also has high specific surface area of 744.5m2/g and low density of 0.063g/cm3. The specific surface area of the aerogel is gradually reduced with the increase of heat treatment temperature, but it is still as high as 153.45m2/g after 2h treatment under 1200℃.After heat treatment at different temperatures,the leaf-like porous structure of alumina aerogel does not change significantly,indicating that this alumina aerogel has high temperature stability.
Key wordsalumina aerogel    sol-gel    chelating reagent    heat treatment    specific surface area
收稿日期: 2017-07-04      出版日期: 2019-12-17
中图分类号:  TB35  
基金资助: 
通讯作者: 余煜玺(1974-),男,教授,博士,主要研究极端环境应用的新材料与器件,联系地址:福建省厦门市思明区思明南路422号厦门大学材料学院(361005),E-mail:yu_heart@xmu.edu.cn     E-mail: yu_heart@xmu.edu.cn
引用本文:   
余煜玺, 马锐, 王贯春, 张瑞谦, 彭小明. 高比表面积、低密度块状Al2O3气凝胶的制备及表征[J]. 材料工程, 2019, 47(12): 136-142.
YU Yu-xi, MA Rui, WANG Guan-chun, ZHANG Rui-qian, PENG Xiao-ming. Preparation and characterization of Al2O3 bulk aerogel with high specific surface area and low density. Journal of Materials Engineering, 2019, 47(12): 136-142.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000852      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/136
[1] McHALE J M, AUROUX A, PERROTTA A J, et al. Surface energies and thermodynamic stability in nanocrystalline alumina[J]. Science, 1997, 277(5327):788-791.
[2] KEYSAR S, SHTER G E, HAZAN Y D, et al. Heat treatment of alumina aerogels[J]. Chemistry of Materials, 1997, 9(11):2464-2467.
[3] 余煜玺,马锐. SiC微/纳米纤维毡增强SiO2气凝胶复合材料的制备和表征[J]. 材料工程, 2018, 46(11):45-50. YU Y X, MA R. Preparation and characterization of silicon carbide micro/nano fibrous mat reinforced silica aerogel composites[J]. Journal of Materials Engineering, 2018, 46(11):45-50.
[4] 刘洪丽,邓青沂,褚鹏. 超临界干燥制备PSNB气凝胶及其超疏水性能研究[J]. 材料工程, 2018, 46(2):22-26. LIU H L, DENG Q Y, CHU P. Preparation and hydrophobic properties of polyborosilazane aerogels via CO2 supercritical drying[J]. Journal of Materials Engineering, 2018, 46(2):22-26.
[5] HIRASHIMA H, KOJIMA C, IMAI H. Application of alumina aerogels as catalysts[J]. Journal of Sol-Gel Science and Technology, 1997, 8(1/3):843-846.
[6] ZU G, SHEN J, ZOU L, et al. Nanoengineering super heat-resistant, strong alumina aerogels[J]. Chemistry of Materials, 2013, 25(23):4757-4764.
[7] YOLDAS B E. Hydrolysis of aluminium alkoxides and bayerite conversion[J]. Journal of Applied Chemistry & Biotechnology, 2007, 23(11):803-809.
[8] YOLDAS B E. Alumina gels that form porous transparent Al2O3[J]. Journal of Materials Science, 1975, 10(11):1856-1860.
[9] YOLDAS B E,PARTLOW D P.Formation of mullite and other alumina-based ceramics via hydrolytic polycondensation of alkoxides and resultant ultra-and microstructural effects[J].Journal of Materials Science,1988,23(5):1895-1900.
[10] 何飞,赫晓东,李垚. 无机盐和有机醇盐制备Al2O3干凝胶[J]. 硅酸盐学报, 2006, 34(9):1093-1097. HE F, HE X D, LI Y. Al2O3 xerogels synthesized by inorganic salt and organic alkoxide[J]. Journal of the Chinese Ceramic Society, 2006, 34(9):1093-1097.
[11] JANOSOVITS U, ZIEGLER G, SCHARF U, et al. Structural characterization of intermediate species during synthesis of Al2O3 aerogels[J]. Journal of Non-Crystalline Solids, 1997, 210(1):1-13.
[12] POCO J F, SATCHER JR J H, HRUBESH L W. Synthesis of high porosity monolithic alumina aerogels[J]. Journal of Non-Crystalline Solids, 2001, 285(1/3):57-63.
[13] 高庆福,张长瑞,冯坚,等. 低密度、块状氧化铝气凝胶制备[J]. 无机化学学报. 2008, 24(9):1456-1460. GAO Q F, ZHANG C R, FENG J, et al. Preparation of low density monolithic alumina aerogels[J]. Chinese Journal of Inorganic Chemistry, 2008, 24(9):1456-1460.
[14] ZU G, SHEN J, WEI X, et al. Preparation and characterization of monolithic alumina aerogels[J]. Journal of Non-Crystalline Solids, 2011, 357(15):2903-2906.
[15] HIMMEL B, GERBER T, BURGER H, et al. Structural characterization of SiO2-Al2O3 aerogels[J]. Journal of Non-Crystalline Solids, 1995, 185(1/2):56-66.
[16] HEGDE N D, RAO A V. Physical properties of methy-ltrimethoxysilane based elastic silica aerogels prepared by the two-stage sol-gel process[J]. Journal of Materials Science, 2007, 42(16):6965-6971.
[17] HEGDE N D, RAO A V. Effect of processing temperature on gelation and physical properties of low density TEOS based silica aerogels[J]. Journal of Sol-Gel Science and Technology, 2006, 38(1):55-61.
[18] XU L, JIANG Y G, FENG J Z, et al. Influence of ethyl acetoacetate on the structure and thermal stability of alumina aerogel[J]. Materials Science Forum, 2015, 816:157-162.
[19] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure & Applied Chemistry, 1985, 57(4):603-619.
[20] WANG J A, BOKHIMI X, MORALES A, et al. Aluminum local environment and defects in the crystalline structure of sol-gel alumina catalyst[J]. The Journal of Physical Chemistry B, 1999, 103(2):299-303.
[21] BODAGHI M, MIRHABIBI A R, ZOLFONUN H, et al. Investigation of phase transition of γ-alumina to α-alumina via mechanical milling method[J]. Phase Transitions, 2008, 81(6):571-580.
[22] 周洁洁,陈晓红,胡子君,等. 热处理对块状氧化铝气凝胶微观结构的影响[J]. 宇航材料工艺, 2010, 40(2):51-54. ZHOU J J, CHEN X H, HU Z J, et al. Effect of heat treatment on microstructure of monolithic alumina aerogels[J]. Aerospace Materials and Technology, 2010, 40(2):51-54.
[23] 余煜玺,朱孟伟. 高球形度、高比表面积SiO2/TiO2气凝胶小球的制备和表征[J]. 材料工程, 2017, 45(2):7-11. YU Y X, ZHU M W. Preparation and characterization of highly spherical silica-titania aerogel beads with high surface area[J]. Journal of Materials Engineering, 2017, 45(2):7-11.
[24] 段远源,林杰,王晓东,等. 二氧化硅气凝胶的气相热导率模型分析[J]. 化工学报, 2012, 63(增刊1):54-58. DUAN Y Y, LIN J, WANG X D, et al. Analysis of gaseous thermal conductivity models of silica aerogels[J]. Journal of Chemical Industry and Engineering, 2012, 63(Suppl 1):54-58.
[1] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[2] 高钰璧, 丁雨田, 孟斌, 马元俊, 陈建军, 许佳玉. Inconel 625合金中析出相演变研究进展[J]. 材料工程, 2020, 48(5): 13-22.
[3] 李进, 候冰娜, 韩超越, 倪凯, 赵梓年, 李征征. 可注射乙酰化乙二醇壳聚糖/泊洛沙姆复合水凝胶的制备及药物缓释研究[J]. 材料工程, 2020, 48(5): 83-90.
[4] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[5] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[6] 杨伸勇, 张丛春, 杨卓青, 李红芳, 姚锦元, 黄漫国, 汪红, 丁桂甫. 高温ITO薄膜应变计制备及压阻性能[J]. 材料工程, 2020, 48(4): 145-150.
[7] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[8] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[9] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[10] 毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
[11] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[12] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[13] 洪秋, 万隆, 李建伟. 溶胶-凝胶法制备金刚石/陶瓷结合剂复合烧结体及其性能表征[J]. 材料工程, 2019, 47(12): 130-135.
[14] 杨胶溪, 贾无名, 王欣, 文强, 张晏玮, 柏广海, 王荣山. 激光熔凝处理对Zr-1Nb核燃料包壳组织和性能的影响[J]. 材料工程, 2018, 46(8): 120-126.
[15] 陈义川, 胡跃辉, 胡克艳, 张效华, 童帆, 帅伟强, 劳子轩. 共掺浓度对Na-Al共掺杂ZnO薄膜微观结构和光电性能的影响[J]. 材料工程, 2018, 46(6): 51-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn