Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 144-151    DOI: 10.11868/j.issn.1001-4381.2017.000853
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
A100超高强度钢的流变应力曲线修正与唯象本构关系
任书杰1,2, 罗飞2, 田野2, 刘大博2, 王克鲁1, 鲁世强1
1. 南昌航空大学 航空制造工程学院, 南昌 330063;
2. 中国航发北京航空材料研究院, 北京 100095
Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel
REN Shu-jie1,2, LUO Fei2, TIAN Ye2, LIU Da-bo2, WANG Ke-lu1, LU Shi-qiang1
1. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China;
2. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(1616 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在Gleeble-3500型热模拟试验机上对A100超高强度钢进行热压缩实验,获得了在变形温度为850~1200℃,应变速率为0.001~10s-1以及变形程度为60%条件下的流变应力曲线,分析热压缩过程中摩擦和温升效应对流变应力的影响,修正了流变应力曲线;并在Arrhenius双曲正弦函数方程的基础上引入应变量参数构建了基于应变量耦合的唯象本构模型。结果表明:随着变形温度的降低或应变速率的增加,摩擦和温升效应对流变应力的影响逐渐显著;所建立的本构模型预测值与实验值的绝对平均相对误差为4.902%,相关系数为0.99,能够用于准确预测不同应变下的流变应力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任书杰
罗飞
田野
刘大博
王克鲁
鲁世强
关键词 A100超高强度钢流变应力曲线修正唯象本构关系热压缩实验    
Abstract:The flow stress curves in the deformation temperature range of 850-1200℃, the strain rate of 0.001-10s-1 and the deformation degree of 60% were obtained by hot compression test of A100 ultra-high strength steel on Gleeble-3500 thermal mechanical simulator. The effect of friction and temperature rise on the flow stress during the hot compression process was analyzed, and the flow stress curves were corrected. Phenomenological constitutive model based on introducing the strain parameter was established by the Arrhenius hyperbolic sine function equation. The results show that the influence of friction and temperature rise on the flow stress is gradually obvious with the decrease of deformation temperature or the increase of strain rate. Through comparison between experimental and predicted values, the absolute average relative error is 4.902% and the correlation coefficient is 0.99. It is revealed that the established constitutive model can accurately predict the flow stress under different strains.
Key wordsA100 ultra-high strength steel    correction of flow stress curve    phenomenological consti-tutive relationship    hot compression test
收稿日期: 2017-07-05      出版日期: 2019-06-17
中图分类号:  TG142.41  
通讯作者: 罗飞(1978-),女,博士,高级工程师,研究方向:金属加工及数值模拟计算,联系地址:北京市81信箱14分箱(100095),E-mail:luofei621@163.com     E-mail: luofei621@163.com
引用本文:   
任书杰, 罗飞, 田野, 刘大博, 王克鲁, 鲁世强. A100超高强度钢的流变应力曲线修正与唯象本构关系[J]. 材料工程, 2019, 47(6): 144-151.
REN Shu-jie, LUO Fei, TIAN Ye, LIU Da-bo, WANG Ke-lu, LU Shi-qiang. Flow stress curve correction and phenomenological constitutive relationship of A100 ultra-high strength steel. Journal of Materials Engineering, 2019, 47(6): 144-151.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000853      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/144
[1] HEMPHILL R M,WERT D E,NOVOTNY P M,et al. High strength, high fracture toughness alloy:US 005268044A[P]. 1993-12-07.
[2] 钟平. A-100超高强度钢的组织与性能[C]//中国金属学会. 第三届中国钢铁年会论文集. 北京:中国金属学会,2001:825-828. ZHONG P. Microstructure and mechanical properties in A-100 ultrahigh strength steel[C]//CSM.The 3th CSM Steel Congress. Beijing:CSM,2001:825-828.
[3] 李志,赵振业. AerMet100钢的研究与发展[J]. 航空材料学报,2006,26(3):265-270. LI Z,ZHAO Z Y. Research and development of AerMet100 steel[J]. Journal of Aeronautical Materials,2006,26(3):265-270.
[4] 张胜男,程兴旺. AerMet100超高强度钢的动态力学性能研究[J]. 材料工程,2015,43(12):24-30. ZHANG S N,CHENG X W. Dynamic mechanical properties of AerMet100 ultra-high strength steel[J]. Journal of Materials Engineering,2015,43(12):24-30.
[5] 程明阳,郝世明,谢敬佩,等. SiCP/Al-Cu复合材料的高温热变形行为[J]. 材料工程,2017,45(2):17-23. CHENG M Y,HAO S M,XIE J P,et al. Hot deformation behavior of SiCP/Al-Cu composite[J]. Journal of Materials Engineering,2017,45(2):17-23.
[6] LIU J,WU X D,WAN M,et al. Study on hot deformation behavior of titanium alloy by modified Arrhenius equation[J]. Materials Science and Technology,2015,23(3):7-11.
[7] LIU Y,YIN Z,LUO J,et al. The constitutive relationship and processing map of hot deformation in A100 steel[J]. High Temperature Materials and Processes,2016,35(4):399-405.
[8] JI G L,LI F G,LI Q H,et al. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel[J]. Materials Science and Engineering:A,2011,538(13/14):4774-4782.
[9] 王鑫,董洪波,邹忠波,等. AerMet100钢的热变形显微组织演变及动态再结晶行为[J].特种铸造及有色合金,2016,36(2):121-125. WANG X,DONG H B,ZOU Z B,et al. Microstructure evolution and dynamic recrystallization behavior of hot deformed AerMet-100 steel[J]. Special Casting & Nonferrous alloys,2016,36(2):121-125.
[10] 王春旭,刘宪民,田志凌,等. 超高强度23Co14Ni12Cr3MoE钢的热变形行为研究[J]. 航空材料学报,2011,31(6):19-23. WANG C X,LIU X M,TIAN Z L,et al. Hot deformation behavior of 23Co14Ni12Cr3MoE ultra-high strength steel[J]. Journal of Aeronautical Materials,2011,31(6):19-23.
[11] LI J B,LIU Y,WANG Y,et al. Constitutive equation and processing map for hot compressed as-cast Ti-43Al-4Nb-1.4W-0.6B alloy[J]. Transactions of Nonferrous Metals Society of China,2013,23(11):3383-3391.
[12] QIAN L Y,FANG G,ZENG P,et al. Correction of flow stress and determination of constitutive constants for hot working of API-X100 pipeline steel[J]. International Journal of Pressure Vessels and Piping,2015,132/133(9):43-51.
[13] EBRAHIMI R,NAJAFIZADEH A. A new method for evaluation of fraction in bulk metal forming[J]. Journal of Materials Processing Technology,2004,152(2):136-143.
[14] LAASRAOUI A,JONAS J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transac-tions A,1991,22(7):1545-1558.
[15] ROEBUCK B,LORD J D,BROOKS M,et al. Measurement of flow stress in hot axisymmetric compression tests[J]. Materials at High Temperatures,2006,23(2):59-83.
[16] 柴传国,冯学磊,武海军,等. AerMet100钢动态剪切性能数值仿真研究[J]. 北京理工大学学报,2014,34(12):1223-1228. CHAI C G,FENG X L,WU H J,et al. Numerical simulation of dynamic shear properties of AerMet100 steel[J]. Transactions of Beijing Institute of Technology,2014,34(12):1223-1228.
[17] MATAYA M C,SACKSCHEWSKY V E. Effect of internal heating during hot compression on the stress-strain behavior of alloy 304L[J]. Metallurgical and Materials Transactions A,1994,25(12):2737-2752.
[18] SELLARS C M,McTEGART W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn