Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 82-87    DOI: 10.11868/j.issn.1001-4381.2017.000910
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氧化锡纳米线的制备及其乙醇气体敏感性能
李立珺, 苗瑞霞, 张霞
西安邮电大学 电子工程学院, 西安 710121
Preparation and ethanol gas sensor properties of SnO2 nanowires
LI Li-jun, MIAO Rui-xia, ZHANG Xia
Department of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
全文: PDF(5739 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用热蒸发法成功制备氧化锡纳米线。用X射线衍射、扫描电子显微镜和透射电子显微镜对所制备纳米线的晶格结构和表面形貌进行表征。所制材料为金红石氧化锡单晶结构,纳米线直径为50~200nm,长度为5~15μm,符合气-液-固生长机制。以氧化锡为气敏材料,制备了旁热式结构气敏元件,测试该元件对浓度范围为25×10-6~500×10-6的乙醇气体环境的敏感性能。结果表明,该元件的最佳工作温度约为260℃;在25×10-6和500×10-6的乙醇气体中,灵敏度分别为7.54和111.01,响应时间为2~20s,恢复时间为5~33s;在测试范围内灵敏度与气体浓度具有良好的线性关系;7天内重复测量误差在5%以内,稳定性较好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李立珺
苗瑞霞
张霞
关键词 热蒸发法氧化锡纳米线气敏性能    
Abstract:Tin oxide nanowires were successful prepared using thermal evaporation method. The crystal structure and surface morphology of the nanowires were characterized by X-ray diffraction, scanning electron microscope and transmission electron microscope. The as-prepared nanowires are rutile single crystal SnO2 structure, with diameter in 50-200nm, and length of 5-15μm, conforming to the gas-liquid-solid growth mechanism. The heater structure gas sensor was prepared using SnO2 nanowires as the gas sensitive material. The gas sensitive performance of the samples was tested in ethanol gas concentration range of 25×10-6-500×10-6. The results show that the best working temperature of the sensor is about 260℃; in the 25×10-6 and 500×10-6 ethanol gas environment, the sensitivity is 7.54 and 111.01 respectively, response time of the sensor is 2-20s, and recovery time is 5-33s;the sensitivity and the gas concentration has a good linear relationship within the measuring range; the sensor has favourable stability with less than 5% repeated measurement error in 7 days.
Key wordsthermal evaporation    tin oxide    nanowire    gas sensor property
收稿日期: 2017-07-15      出版日期: 2019-06-17
中图分类号:  TP212.2  
通讯作者: 李立珺(1981-),女,副教授,博士,从事专业为半导体纳米材料与器件,联系地址:陕西省西安市长安区韦郭路西安邮电大学电子工程学院(710121),E-mail:lilijun007@163.com     E-mail: lilijun007@163.com
引用本文:   
李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
LI Li-jun, MIAO Rui-xia, ZHANG Xia. Preparation and ethanol gas sensor properties of SnO2 nanowires. Journal of Materials Engineering, 2019, 47(6): 82-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000910      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/82
[1] MEI L,DENG J W,YIN X M,et al. Ultrasensitive ethanol sensor based on 3D aloe-like SnO2[J]. Sensors and Actuators B:Chemical,2012,166:7-11.
[2] LIU B,ZHANG L H,ZHAO H,et al. Synthesis and sensing properties of spherical flowerlike architectures assembled with SnO2 submicronrods[J]. Sensors and Actuators B:Chemical,2012,173:643-651.
[3] LI F,CHEN Y J,MA J M. Porous SnO2 nanoplates for highly sensitive NO detection[J]. Journal of Materials Chemistry A,2014,2:7175-7178.
[4] WANG M, ZHU L, ZHANG C, et al. Lanthanum oxide@antimony-doped tin oxide with high gas sensitivity and selectivity towards ethanol vapor[J]. Sensors and Actuators B:Chemical,2016,224:478-484.
[5] TYAGI P,SHARMA A,TOMAR M,et al. Metal oxide catalyst assisted SnO2 thin film based SO2 gas sensor[J]. Sensors and Actuators B:Chemical,2016,224:282-289.
[6] ABIDEEN Z U,KIM J H,KIM S S. Optimization of metal nanoparticle amount on SnO2 nanowires to achieve superior gas sensing properties[J]. Sensors and Actuators B:Chemical,2017,238:374-380.
[7] XIAO Y,YANG Q,WANG Z,et al. Improvement of NO2 gas sensing performance based on discoid tin oxide modified by reduced graphene oxide[J]. Sensors and Actuators B:Chemical,2016,227:419-426.
[8] CHIO H J,CHOI S J,CHOO S,et al. Hierarchical ZnO nano-wires-loaded Sb-doped SnO2-ZnO micrograting pattern via direct imprinting-assisted hydrothermal growth and its selective detection of acetone molecules[J]. Scientific Reports,2016,6:18731.
[9] DENG X L,ZHANG L L,GUO J,et al. ZnO enhanced NiO-based gas sensors towards ethanol[J]. Materials Research Bulletin, 2017,90:170-174.
[10] CHOI K S,PARK S,CHANG S P. Enhanced ethanol sensing properties based on SnO2 nanowires coated with Fe2O3 nanop-articles[J]. Sensors and Actuators B:Chemical,2017,238:871-879.
[11] KOU X Y,WANG C,DING M D,et al. Synthesis of Co-doped SnO2 nanofibers and their enhanced gas-sensing properties[J]. Sensors and Actuators B:Chemical,2016,236:425-432.
[12] ZHANG K, YANG X, WANG Y, et al. Pd-loaded SnO2 ultra-thin nanorod-assembled hollow microspheres with the significant improvement for toluene detection[J]. Sensors and Actuators B:Chemical,2017,243:465-474.
[13] LI F,GAO X,WAG R,et al. Study on TiO2-SnO2, core-shell heterostructure nanofibers with different work function and its application in gas sensor[J]. Sensors and Actuators B:Chem-ical,2017,248:812-819.
[14] 蒋秋萍,刘拥军,杜国芳,等. 纳米化SnO2气敏材料的研究进展[J]. 电子元件与材料,2013,32(2):77-81. JIANG Q P,LIU Y J,DU G F,et al. Research progress of SnO2 gas sensing materials[J]. Electronic Components & Materials,2013,32(2):77-81.
[15] PAN Z W,DAI Z R,WANG Z L. Nanobelts of semiconducting oxides[J]. Science,2001,291(5510):1947-1949.
[16] LIU Y,ZHENG C,WANG W,et al. Synthesis and characteri-zation of rutile SnO2 nanorods[J]. Advanced Materials,2001,13(24):1883-1887.
[17] SCOTT R W J,YANG S M,CHABANIS G,et al. Tin dioxide opals and inverted opals:near-ideal microstructures for gas sens-ors[J]. Advanced Materials,2001,13(19):1468-1472.
[18] KOLMAKOV A,ZHANG Y,CHENG G,et al. Detection of CO and O2 using tin oxide nanowire sensors[J]. Advanced Mate-rials,2003,15(12):997-1000.
[19] WANGNER R S,ELLIS W C. Vapor-liquid-solid mechanism of single crystal growth[J]. Applied Physics Letters,1964,4(5):89-90.
[1] 于丽新, 兰晓琳, 邵枫, 刘艇安, 张诗琪, 王志江. MWCNT/FeNi复合纳米线制备及其雷达微波和工频电磁波吸收性能[J]. 材料工程, 2018, 46(8): 64-70.
[2] 李瑞, 刘立英, 姬宇航, 王如志, 杨炎翰, 胡安明, 白石. 激光诱导法制备高质量铌酸钾纳米线及其发光性能[J]. 材料工程, 2018, 46(11): 51-56.
[3] 赵斯琴, 娜米拉, 长山. 钛酸钠纳米线制备TiO2纳米线的反应条件[J]. 材料工程, 2015, 43(12): 58-62.
[4] 王学华, 陈归, 蔡鹏, 付萍, 李承勇, 杨亮, 曹宏. 交流电化学沉积FeCo合金纳米线阵列及其磁性能研究[J]. 材料工程, 2012, 0(3): 79-82.
[5] 王学华, 陈归, 李承勇, 杨亮, 曹宏, 周伟民. 交流电化学沉积铜纳米线阵列及其机理探讨[J]. 材料工程, 2010, 0(8): 20-23.
[6] 侯峰, 阴育新, 谭欣, 赵林. 阳极氧化TiO2纳米线生长研究[J]. 材料工程, 2010, 0(3): 79-83.
[7] 王朝华, 刘乙江, 朱达川, 涂铭旌. 室温固相法制备工艺对纳米ATO性能的影响[J]. 材料工程, 2009, 0(9): 42-46.
[8] 陈尔凡, 张黎. 不同形态低维ZnO晶须的制备及表征[J]. 材料工程, 2008, 0(6): 1-4.
[9] 覃东欢, 刘红梅, 陶洪, 兰林峰, 陈军武, 曹镛. 第VI族元素半导体纳米线的可控合成及其纳米电子学器件研究[J]. 材料工程, 2008, 0(10): 76-79,84.
[10] 李海涛, 刘力虎, 范胜华, 孙会元. 复合锌镍纳米线结构和磁性研究[J]. 材料工程, 2008, 0(10): 158-160.
[11] 李霞, 赵东林, 侯景伟, 沈曾民. 碳纳米管填充金属Ag纳米线及其机理研究[J]. 材料工程, 2006, 0(3): 11-13,17.
[12] 裴立宅, 唐元洪, 张勇, 郭池, 陈扬文. 氧化物辅助生长硅纳米线[J]. 材料工程, 2005, 0(6): 54-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn