Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (3): 1-6    DOI: 10.11868/j.issn.1001-4381.2017.000934
  锂离子电池专栏 本期目录 | 过刊浏览 | 高级检索 |
静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜
龚文正1, 周晶晶2, 阮诗伦2,3, 申长雨2,3
1. 大连理工大学 材料科学与工程学院, 辽宁 大连 116024;
2. 大连理工大学 工程力学系, 辽宁 大连 116024;
3. 工业装备结构分析国家重点实验室, 辽宁 大连 116024
PPESK/PVDF Lithium-ion Battery Composite Separators Fabricated by Combination of Electrospinning and Electrospraying Techniques
GONG Wen-zheng1, ZHOU Jing-jing2, RUAN Shi-lun2,3, SHEN Chang-yu2,3
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China;
2. Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, Liaoning, China;
3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, Liaoning, China
全文: PDF(1565 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为了改善传统静电纺丝无纺布纤维膜力学性能较差的缺点,采用静电纺丝和静电喷雾技术相结合的方法,同时进行静电纺PPESK浓溶液和PVDF稀溶液,制备得到PPESK纤维/PVDF珠粒复合锂电池隔膜,并在160℃进行热压后处理。通过扫描电子显微镜、万能拉伸试验机、电化学工作站及充放电测试仪等表征复合锂电池隔膜的微观结构、力学性能、离子电导率和相应的电池充放电性能。结果表明,该复合隔膜具有良好的电解液润湿性,室温下离子电导率达到1.92mS·cm-1,PVDF珠粒均匀地分布在PPESK纤维中,珠粒经热压产生微熔融有效增强了纤维之间的黏结力,使复合膜的力学强度提高到13.2MPa。此外,使用复合隔膜装配的电池展现出较高的放电比容量和稳定的循环性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚文正
周晶晶
阮诗伦
申长雨
关键词 静电纺丝静电喷雾聚芳醚砜酮隔膜力学性能    
Abstract:In order to improve the mechanical property of traditional electrospinning fibrous membranes, PPESK-fiber/PVDF-bead composite membranes were prepared via simultaneously electrospinning of PPESK concentrated solution and electrospraying of PVDF dilute solution, and then hot pressed at 160℃. The membrane structure, tensile strength, ionic conductivity and cycling performance of lithium-ion batteries were measured by scanning electron microscope, universal tensile test machine, electrochemical work station and battery cycle system. The results show that the hot-pressed PPESK/PVDF composite membrane separator exhibits excellent liquid electrolyte wettability, ionic conductivity reaches 1.92mS·cm-1 at room temperature,PVDF beads are uniformly dispersed in PPESK fibers. The interfacial strength of PPESK fibers is effectively enhanced due to the melt of PVDF beads during the hot press process, hence the mechanical strength of composite membrane is leached 13.2MPa. In addition, cells assembled with PPESK/PVDF composite membrane show high discharge capacity and stable cycling performances.
Key wordselectrospinning    electrospraying    poly(phthalazinone ether sulfone ketone)    membrane separator    mechanical property
收稿日期: 2017-07-23      出版日期: 2018-03-20
中图分类号:  TQ326.5  
基金资助: 
通讯作者: 阮诗伦(1976-),男,副教授,博士,研究方向为纳米高分子复合材料的制备、力学行为及增强机理,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学工程力学系(116024),E-mail:ruansl@dlut.edu.cn     E-mail: ruansl@dlut.edu.cn
引用本文:   
龚文正, 周晶晶, 阮诗伦, 申长雨. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3): 1-6.
GONG Wen-zheng, ZHOU Jing-jing, RUAN Shi-lun, SHEN Chang-yu. PPESK/PVDF Lithium-ion Battery Composite Separators Fabricated by Combination of Electrospinning and Electrospraying Techniques. Journal of Materials Engineering, 2018, 46(3): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000934      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/1
[1] 曹金亮,陈修强,张春光,等. 锂电池最新研究进展[J]. 电源技术,2013,37(8):1460-1463. CAO J L, CHEN X Q, ZHANG C G, et al. Latest research progress of lithium batteries[J]. Chinese Journal of Power Sources, 2013, 37(8):1460-1463.
[2] ZHANG S S. A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164(1):351-364.
[3] 张洪锋,井澄妍,王习文,等. 动力锂离子电池隔膜的研究进展[J]. 中国造纸,2015,34(2):55-60. ZHANG H F, JING C Y, WANG X W, et al. A review on the separator for power Li-ion batteries[J]. China Pulp & Paper, 2015, 34(2):55-60.
[4] LI D, XIA Y N. Electrospinning of nanofibers:reinventing the wheel?[J]. Advanced Materials, 2004, 16(14):1151-1170.
[5] ZHAI Y Y, WANG N, MAO X, et al. Sandwich-structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(35):14511-14518.
[6] 赵剑蒙. 锂离子电池用PVDF/PMMA静电纺复合隔膜的制备与改性研究[D]. 上海:东华大学,2014. ZHAO J M. Fabrication and modification of electrospun PVDF/PMMA composite membrane as lithium-ion battery seperator[D]. Shanghai:Donghua University, 2014.
[7] CAROL P, RAMAKRISHNAN P, JOHN B, et al. Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196(23):10156-10162.
[8] DING J, KONG Y, LI P, et al. Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery[J]. Journal of the Electrochemical Society, 2012, 159(9):1474-1480.
[9] 刘志宏,孔庆山,崔光磊,等. "刚柔并济"的锂离子电池复合隔膜及聚合物电解质[J]. 新材料产业,2012(9):44-50. LIU Z H, KONG Q S, CUI G L, et al. Strong and flexible composite membrane and polymer electrolyte for lithium-ion battery[J]. Advanced Materials Industry, 2012(9):44-50.
[10] HUANG F, XU Y, PENG B, et al. Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(5):932-940.
[11] ZACCARIA M, FABIANI D, CANNUCCIARI G, et al. Effect of silica and tin oxide nanoparticles on properties of nanofibrous electrospun separators[J]. Journal of the Electrochemical Society, 2015, 162(6):915-920.
[12] 张子浩. 静电纺丝技术制备锂离子电池隔膜的研究现状[J]. 绝缘材料,2016(5):1-6. ZHANG Z H. Research status of lithium-ion battery separator prepared by electrospinning technique[J]. Insulating Materials, 2016(5):1-6.
[13] QI W, LU C, CHEN P, et al. Electrochemical performances and thermal properties of electrospun poly (phthalazinone ether sulfone ketone) membrane for lithium-ion battery[J]. Materials Letters, 2012, 66(1):239-241.
[14] CAO J, WANG L, FANG M, et al. Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries[J]. Journal of Power Sources, 2014, 246:499-504.
[15] VENUGOPAL G, MOORE J, HOWARD J, et al. Characterization of microporous separators for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77(1):34-41.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 谢超, 邢健, 丁玉梅, 王循, 杨卫民, 李好义. 熔体微分电纺回收PP无纺布纳米纤维膜制备及吸油性能[J]. 材料工程, 2020, 48(6): 125-131.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn