Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (3): 1-6    DOI: 10.11868/j.issn.1001-4381.2017.000934
  锂离子电池专栏 本期目录 | 过刊浏览 | 高级检索 |
静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜
龚文正1, 周晶晶2, 阮诗伦2,3,*(), 申长雨2,3
1 大连理工大学 材料科学与工程学院, 辽宁 大连 116024
2 大连理工大学 工程力学系, 辽宁 大连 116024
3 工业装备结构分析国家重点实验室, 辽宁 大连 116024
PPESK/PVDF Lithium-ion Battery Composite Separators Fabricated by Combination of Electrospinning and Electrospraying Techniques
Wen-zheng GONG1, Jing-jing ZHOU2, Shi-lun RUAN2,3,*(), Chang-yu SHEN2,3
1 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
2 Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, Liaoning, China
3 State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian 116024, Liaoning, China
全文: PDF(1565 KB)   HTML ( 17 )  
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

为了改善传统静电纺丝无纺布纤维膜力学性能较差的缺点,采用静电纺丝和静电喷雾技术相结合的方法,同时进行静电纺PPESK浓溶液和PVDF稀溶液,制备得到PPESK纤维/PVDF珠粒复合锂电池隔膜,并在160℃进行热压后处理。通过扫描电子显微镜、万能拉伸试验机、电化学工作站及充放电测试仪等表征复合锂电池隔膜的微观结构、力学性能、离子电导率和相应的电池充放电性能。结果表明,该复合隔膜具有良好的电解液润湿性,室温下离子电导率达到1.92mS·cm-1,PVDF珠粒均匀地分布在PPESK纤维中,珠粒经热压产生微熔融有效增强了纤维之间的黏结力,使复合膜的力学强度提高到13.2MPa。此外,使用复合隔膜装配的电池展现出较高的放电比容量和稳定的循环性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
龚文正
周晶晶
阮诗伦
申长雨
关键词 静电纺丝静电喷雾聚芳醚砜酮隔膜力学性能    
Abstract

In order to improve the mechanical property of traditional electrospinning fibrous membranes, PPESK-fiber/PVDF-bead composite membranes were prepared via simultaneously electrospinning of PPESK concentrated solution and electrospraying of PVDF dilute solution, and then hot pressed at 160℃. The membrane structure, tensile strength, ionic conductivity and cycling performance of lithium-ion batteries were measured by scanning electron microscope, universal tensile test machine, electrochemical work station and battery cycle system. The results show that the hot-pressed PPESK/PVDF composite membrane separator exhibits excellent liquid electrolyte wettability, ionic conductivity reaches 1.92mS·cm-1 at room temperature, PVDF beads are uniformly dispersed in PPESK fibers. The interfacial strength of PPESK fibers is effectively enhanced due to the melt of PVDF beads during the hot press process, hence the mechanical strength of composite membrane is leached 13.2MPa. In addition, cells assembled with PPESK/PVDF composite membrane show high discharge capacity and stable cycling performances.

Key wordselectrospinning    electrospraying    poly(phthalazinone ether sulfone ketone)    membrane separator    mechanical property
收稿日期: 2017-07-23      出版日期: 2018-03-20
中图分类号:  TQ326.5  
基金资助:国家自然科学基金重点项目(11432003)
通讯作者: 阮诗伦     E-mail: ruansl@dlut.edu.cn
作者简介: 阮诗伦(1976-), 男, 副教授, 博士, 研究方向为纳米高分子复合材料的制备、力学行为及增强机理, 联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学工程力学系(116024), E-mail: ruansl@dlut.edu.cn
引用本文:   
龚文正, 周晶晶, 阮诗伦, 申长雨. 静电纺丝与静电喷雾技术共纺制备PPESK/PVDF复合锂电池隔膜[J]. 材料工程, 2018, 46(3): 1-6.
Wen-zheng GONG, Jing-jing ZHOU, Shi-lun RUAN, Chang-yu SHEN. PPESK/PVDF Lithium-ion Battery Composite Separators Fabricated by Combination of Electrospinning and Electrospraying Techniques. Journal of Materials Engineering, 2018, 46(3): 1-6.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000934      或      http://jme.biam.ac.cn/CN/Y2018/V46/I3/1
Fig.1  静电纺PPESK/PVDF复合膜热压前(a)后(b)扫描电镜图像
Sample Thickness/μm Porosity/% Uptake/%
Untreated PPESK/PVDF 60 86 850
Hot-pressed PPESK/PVDF 50 80 730
Celgard 2400 PP 25 40 120
Table 1  不同隔膜物理性能
Fig.2  真空烘箱150℃条件下Celgard 2400 PP隔膜热处理1h前(a)、后(b)和热压PPESK/PVDF复合膜热处理1h前(c)、后(d)的形态图
Fig.3  热处理前后的PPESK/PVDF复合膜应力-应变曲线
Fig.4  Celgard 2400 PP膜和热压前后的PPESK/PVDF复合膜电化学阻抗谱图
Fig.5  PP隔膜、热处理前后的PPESK/PVDF复合膜组装电池相应尼奎斯特曲线
Fig.6  Celgard 2400 PP膜与热压处理的PPESK/PVDF复合膜装配扣式锂电池在0.2C倍率下放电比容量曲线和库伦效率曲线
Fig.7  Celgard 2400 PP膜与热压处理的PPESK/PVDF复合膜装配扣式锂电池在不同倍率下放电比容量-循环次数曲线
1 曹金亮, 陈修强, 张春光, 等. 锂电池最新研究进展[J]. 电源技术, 2013, 37 (8): 1460- 1463.
1 CAO J L , CHEN X Q , ZHANG C G , et al. Latest research progress of lithium batteries[J]. Chinese Journal of Power Sources, 2013, 37 (8): 1460- 1463.
2 ZHANG S S . A review on the separators of liquid electrolyte Li-ion batteries[J]. Journal of Power Sources, 2007, 164 (1): 351- 364.
doi: 10.1016/j.jpowsour.2006.10.065
3 张洪锋, 井澄妍, 王习文, 等. 动力锂离子电池隔膜的研究进展[J]. 中国造纸, 2015, 34 (2): 55- 60.
doi: 10.11980/j.issn.0254-508X.2015.02.012
3 ZHANG H F , JING C Y , WANG X W , et al. A review on the separator for power Li-ion batteries[J]. China Pulp & Paper, 2015, 34 (2): 55- 60.
doi: 10.11980/j.issn.0254-508X.2015.02.012
4 LI D , XIA Y N . Electrospinning of nanofibers:reinventing the wheel?[J]. Advanced Materials, 2004, 16 (14): 1151- 1170.
doi: 10.1002/(ISSN)1521-4095
5 ZHAI Y Y , WANG N , MAO X , et al. Sandwich-structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2 (35): 14511- 14518.
doi: 10.1039/C4TA02151G
6 赵剑蒙. 锂离子电池用PVDF/PMMA静电纺复合隔膜的制备与改性研究[D]. 上海: 东华大学, 2014.
6 ZHAO J M. Fabrication and modification of electrospun PVDF/PMMA composite membrane as lithium-ion battery seperator[D]. Shanghai: Donghua University, 2014.
7 CAROL P , RAMAKRISHNAN P , JOHN B , et al. Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries[J]. Journal of Power Sources, 2011, 196 (23): 10156- 10162.
doi: 10.1016/j.jpowsour.2011.08.037
8 DING J , KONG Y , LI P , et al. Polyimide/poly(ethylene terephthalate) composite membrane by electrospinning for nonwoven separator for lithium-ion battery[J]. Journal of the Electrochemical Society, 2012, 159 (9): 1474- 1480.
doi: 10.1149/2.041209jes
9 刘志宏, 孔庆山, 崔光磊, 等. "刚柔并济"的锂离子电池复合隔膜及聚合物电解质[J]. 新材料产业, 2012, (9): 44- 50.
9 LIU Z H , KONG Q S , CUI G L , et al. Strong and flexible composite membrane and polymer electrolyte for lithium-ion battery[J]. Advanced Materials Industry, 2012, (9): 44- 50.
10 HUANG F , XU Y , PENG B , et al. Coaxial electrospun cellulose-core fluoropolymer-shell fibrous membrane from recycled cigarette filter as separator for high performance lithium-ion battery[J]. ACS Sustainable Chemistry & Engineering, 2015, 3 (5): 932- 940.
11 ZACCARIA M , FABIANI D , CANNUCCIARI G , et al. Effect of silica and tin oxide nanoparticles on properties of nanofibrous electrospun separators[J]. Journal of the Electrochemical Society, 2015, 162 (6): 915- 920.
doi: 10.1149/2.0421506jes
12 张子浩. 静电纺丝技术制备锂离子电池隔膜的研究现状[J]. 绝缘材料, 2016, (5): 1- 6.
12 ZHANG Z H . Research status of lithium-ion battery separator prepared by electrospinning technique[J]. Insulating Materials, 2016, (5): 1- 6.
13 QI W , LU C , CHEN P , et al. Electrochemical performances and thermal properties of electrospun poly (phthalazinone ether sulfone ketone) membrane for lithium-ion battery[J]. Materials Letters, 2012, 66 (1): 239- 241.
doi: 10.1016/j.matlet.2011.08.042
14 CAO J , WANG L , FANG M , et al. Structure and electrochemical properties of composite polymer electrolyte based on poly vinylidene fluoride-hexafluoropropylene/titania-poly(methyl methacrylate) for lithium-ion batteries[J]. Journal of Power Sources, 2014, 246, 499- 504.
doi: 10.1016/j.jpowsour.2013.07.107
15 VENUGOPAL G , MOORE J , HOWARD J , et al. Characterization of microporous separators for lithium-ion batteries[J]. Journal of Power Sources, 1999, 77 (1): 34- 41.
doi: 10.1016/S0378-7753(98)00168-2
[1] 杨建国, 沈伟健, 李华鑫, 贺艳明, 闾川阳, 郑文健, 马英鹤, 魏连峰. 氮掺杂导电碳化硅陶瓷研究进展[J]. 材料工程, 2022, 50(9): 18-31.
[2] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[3] 林方成, 程鹏明, 张鹏, 刘刚, 孙军. Al-Zn-Mg系铝合金的微合金化研究进展[J]. 材料工程, 2022, 50(8): 34-44.
[4] 刘聪聪, 王雅雷, 熊翔, 叶志勇, 刘在栋, 刘宇峰. 短纤维增强C/C-SiC复合材料的微观结构与力学性能[J]. 材料工程, 2022, 50(7): 88-101.
[5] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[6] 杨湘杰, 郑彬, 付亮华, 杨颜. 稀土Y和Sm对AZ91D镁合金组织与性能的影响[J]. 材料工程, 2022, 50(7): 139-148.
[7] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[8] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[9] 宋刚, 李传瑜, 郎强, 刘黎明. 电弧电流对AZ31B/DP980激光诱导电弧焊接接头成形及力学性能的影响[J]. 材料工程, 2022, 50(6): 131-137.
[10] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[11] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[12] 陆腾轩, 孟晓燕, 李狮弟, 邓欣. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
[13] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[14] 姜萱, 陈林, 郝轩弘, 王悦怡, 张晓伟, 刘洪喜. 难熔高熵合金制备及性能研究进展[J]. 材料工程, 2022, 50(3): 33-42.
[15] 陈帅, 陶凤和, 贾长治, 孙河洋. 成形角度对选区激光熔化4Cr5MoSiV1钢组织和性能的影响[J]. 材料工程, 2022, 50(3): 122-130.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn