Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (4): 77-83    DOI: 10.11868/j.issn.1001-4381.2017.000945
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
脱合金化制备纳米多孔Ni-Fe合金及其电催化性能
周琦(), 王亚飞, 冯基伟, 李志洋
兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Preparation and electrocatalytic performance of nanoporous Ni-Fe alloy by dealloying
Qi ZHOU(), Ya-fei WANG, Ji-wei FENG, Zhi-yang LI
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(3854 KB)   HTML ( 11 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用真空熔炼与固溶相结合的方法获得原子分数为Ni30-xFexMn70x=0,10,20)的前驱体合金,通过脱合金化方法制备纳米多孔Ni及Ni-Fe合金,采用X射线衍射(XRD)、扫描电子显微镜(SEM)分析合金相组成和微观结构,运用线性扫描伏安法、交流阻抗、方波电位法及计时电位法研究电极的析氢电催化性能。结果表明:加入Fe获得了片状结构的纳米多孔Ni-Fe合金,提高了纳米多孔Ni的表面积,且Fe与Ni产生协同效应,能够有效提高合金的析氢电催化活性。当Fe含量为10%(原子分数)时,脱合金化得到的纳米多孔Ni-Fe合金表面积最大,析氢电催化性能最好,在0.1A/cm2电流密度下,析氢过电位仅56mV,经10h连续电解,表现出良好的电催化活性和电化学稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周琦
王亚飞
冯基伟
李志洋
关键词 真空熔炼脱合金化纳米多孔Ni-Fe合金析氢电催化性能    
Abstract

The precursor alloy with atomic fraction is Ni30-xFexMn70(x=0, 10, 20) by means of vacuum melting and solid solution, using the method of dealloying to nanoporous Ni and Ni-Fe alloy, with XRD, SEM phase compositions and microstructure were analyzed.The electrocatalytic performance for hydrogen evolution reaction was investigated by linear sweep voltammetry(LSV), electrochemical impedance spectroscopy(IMP), square wave potential technique(SWPT) and chrono potentiometry(CP).The results show that the nanoporous Ni-Fe alloy with lamellar structure is obtained by adding Fe, which improves the surface area of nanoporous Ni, and synergistic effect between Fe and Ni is produced, which can effectively improve the electrocatalytic activity of hydrogen evolution of the alloy.When the atom fraction of Fe is 10%, the surface area of nanoporous Ni-Fe alloy obtained by dealloying is the largest, and the electrocatalytic performance of hydrogen evolution is the best. Under the current density of 0.1A/cm2, hydrogen evolution overpotential is only 56mV, after continuous electrolysis for 10h, the alloy exhibits the high electrocatalytic activity and good electrochemical stability.

Key wordsvacuum melting    dealloying    nanoporous Ni-Fe alloy    electrocatalytic performance of hydrogen evolution
收稿日期: 2017-07-25      出版日期: 2019-04-19
中图分类号:  TG146.1  
基金资助:国家自然科学基金资助项目(51661018)
通讯作者: 周琦     E-mail: zhouxq301@sina.com
作者简介: 周琦(1963-), 女, 硕士, 教授, 主要从事材料电化学研究, 联系地址:甘肃省兰州市七里河区兰工坪路287号兰州理工大学本部中试楼中102室(730050), E-mail:zhouxq301@sina.com
引用本文:   
周琦, 王亚飞, 冯基伟, 李志洋. 脱合金化制备纳米多孔Ni-Fe合金及其电催化性能[J]. 材料工程, 2019, 47(4): 77-83.
Qi ZHOU, Ya-fei WANG, Ji-wei FENG, Zhi-yang LI. Preparation and electrocatalytic performance of nanoporous Ni-Fe alloy by dealloying. Journal of Materials Engineering, 2019, 47(4): 77-83.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000945      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/77
Fig.1  前驱体合金的XRD图谱
Fig.2  前驱体合金的XRD部分放大图谱
Fig.3  脱合金化后Ni-Fe-Mn合金的XRD图谱
Fig.4  脱合金化后Ni-Fe-Mn合金的SEM图
(a)Ni30Mn70; (b)Ni20Fe10Mn70; (c)Ni10Fe20Mn70; (d)Ni20Fe10Mn70截面
Fig.5  不同电极的阴极极化曲线
Electrode b/V a/V i0/(A·cm-2)
Ni30Mn70 0.164 0.336 8.939×10-3
Ni20Fe10Mn70 0.188 0.317 2.060×10-2
Ni10Fe20Mn70 0.187 0.325 1.832×10-2
Table 1  不同电极的析氢动力学参数
Fig.6  不同电极的Nyquist图
Fig.7  纳米多孔Ni-Fe合金不同过电位的Nyquist图
Fig.8  纳米多孔Ni-Fe合金电极的等效电路图
η/mV Rsl/(Ω·cm2) Rct/(Ω·cm2) Rp/(Ω·cm2)
50 1.78 1.636 0.570
100 1.79 1.032 0.113
200 1.82 0.221 0.062
Table 2  纳米多孔Ni-Fe合金等效电路图各元件参数
Fig.9  不同电极的方波I-t响应曲线
Electrode Cdl/(μF·cm-2) Sr/cm2 r
Ni30Mn70 0.4369 21845 21845
Ni20Fe10Mn70 1.0505 52525 52525
Ni10Fe20Mn70 0.9111 45555 45555
Table 3  不同电极的表面参数
Fig.10  纳米多孔Ni-Fe合金电极的计时电位曲线
1 URSUA A , GANDIA L M , SANCHIS P . Hydrogen production from water electrolysis:current status and future trends[J]. Proceedings of the IEEE, 2012, 100 (2): 410- 426.
doi: 10.1109/JPROC.2011.2156750
2 KONG D S , WANG H T , LU Z Y , et al. CoSe2nanoparticles grown on carbon fiber paper:an efficient and stable electroca-talyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2014, 136 (13): 4897- 4900.
doi: 10.1021/ja501497n
3 MARINESCU S C , WINKLER J R , GRAY H B . Molecular mechanisms of cobalt-catalyzed hydrogen evolution[J]. Procee-dings of the National Academy of Sciences, 2012, 109 (38): 15127- 15131.
doi: 10.1073/pnas.1213442109
4 冉敏, 吴艺辉, 何捍卫. 铁元素对镍基Ni-S合金涂层电极析氢性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23 (1): 63- 69.
doi: 10.3969/j.issn.1673-0224.2018.01.009
4 RAN M , WU Y H , HE H W . Effect of Fe on hydrogen evolution performance of Ni-based Ni-S alloy coating electrode[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23 (1): 63- 69.
doi: 10.3969/j.issn.1673-0224.2018.01.009
5 李复丽. Ni-Co-Sn和Ni-Fe-Sn合金电极的制备及其析氢性能研究[D].兰州: 兰州大学, 2016.
5 LI F L. Preparation and hydrogen evolution properties of Ni-Co-Sn and Ni-Fe-Sn alloy electrodes[D]. Lanzhou: Lanzhou University, 2016.
6 王宏智, 张晓振, 黄波, 等. 碳毡基体上电沉积Ni-Mo合金及其催化析氢性能[J]. 化学工业与工程, 2017, 34 (1): 53- 59.
6 WANG H Z , ZHANG X Z , HUANG B , et al. Electrodeposition of Ni-Mo alloy from ionic liquids and its catalytic properties for hydrogen evolution[J]. Chemical Industry and Engineering, 2017, 34 (1): 53- 59.
7 秦海森, 王书亮, 景阳钟, 等. 不同搅拌方式对Ni-Fe-Co镀层组织结构和电催化析氢性能的影响[J]. 表面技术, 2018, 47 (6): 38- 43.
7 QIN H S , WANG S L , JING Y Z , et al. Effects of different stirring methods on microstructure and electro-catalytic hydrogen evolution performance of Ni-Fe-Co coatings[J]. Surface Techno-logy, 2018, 47 (6): 38- 43.
8 McKONE J R , SADTLER B F , WERLANG C A , et al. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution[J]. ACS Catalysis, 2013, 3 (2): 166- 169.
doi: 10.1021/cs300691m
9 BADAWY W A , NADY H , NEGEM M . Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crys-talline Ni-Co cathodes[J]. International Journal of Hydrogen Energy, 2014, 39 (21): 10824- 10832.
doi: 10.1016/j.ijhydene.2014.05.049
10 BACHVAROY V D , ARNAUDOVA M H , RASHKOV R S , et al. Electrochemical deposition of alloys based on Ni-Fe-Co, containing W, P, and their characterization for hydrogen evol-ution reaction[J]. Bulgarian Chemical Communications, 2011, 43 (1): 115- 119.
11 HAN Q , JIN Y , PU N W , et al. Electrochemical evolution of hydrogen on composite La-Ni-Al/Ni-S alloy film in water electr-olysis[J]. Renewable Energy, 2010, 35 (12): 2627- 2631.
doi: 10.1016/j.renene.2010.03.015
12 PASEKA I . Hydrogen evolution reaction on Ni-P alloys:the internal stress and the activities of electrodes[J]. Electrochimica Acta, 2008, 53 (13): 4537- 4543.
doi: 10.1016/j.electacta.2008.01.045
13 MECH K , ZABINSKI P , MUCHA M , et al. Electrodeposition of catalytically active Ni-Mo alloys[J]. Archives of Metallurgy and Materials, 2013, 58 (1): 227- 229.
doi: 10.2478/v10172-012-0178-1
14 孔亚鹏, 陈建设, 刘奎仁, 等. 脉冲镀Ni-Mo-Co合金镀层及其析氢性能[J]. 东北大学学报(自然科学版), 2016, 37 (6): 815- 819.
doi: 10.3969/j.issn.1005-3026.2016.06.012
14 KONG Y P , CHEN J S , LIU K R , et al. Catalytic property of Ni-Mo-Co alloy coating prepared by pulse plating[J]. Journal of Northeastern University(Natural Science), 2016, 37 (6): 815- 819.
doi: 10.3969/j.issn.1005-3026.2016.06.012
15 HAN Q , CUI S , PU N W , et al. A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium[J]. International Journal of Hydrogen Energy, 2010, 35 (11): 5194- 5201.
doi: 10.1016/j.ijhydene.2010.03.093
16 谭秀兰, 唐永建, 刘颖, 等. 去合金化制备纳米多孔金属材料的研究进展[J]. 材料导报, 2009, 23 (3): 68- 76.
16 TAN X L , TANG Y J , LIU Y , et al. Progress in research on preparations of nanoporours metals by dealloying[J]. Materials Review, 2009, 23 (3): 68- 76.
17 ERLEBACHER J , AZIZ M J , KARMA A , et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410 (6827): 450- 453.
doi: 10.1038/35068529
18 周琦, 吴海涛, 贾建刚, 等. 纳米多孔镍的多层次结构及其影响因素[J]. 材料热处理学报, 2013, 34 (8): 11- 15.
18 ZHOU Q , WU H T , JIA J G , et al. Fabrication of nanoporous Ni with multi-hierarchical structure and its influencing factors[J]. Transactions of Materials and Heat Treatment, 2013, 34 (8): 11- 15.
19 黄金昭, 徐征, 李海玲, 等. 纳米晶Ni-Mo-Fe催化阴极的制备与表征[J]. 北京交通大学学报, 2007, 31 (6): 35- 37.
doi: 10.3969/j.issn.1673-0291.2007.06.009
19 HUANG J Z , XU Z , LI H L , et al. Preparation and chara-cterization of nanocrystalline Ni-Mo-Fe as cathode catalyst[J]. Journal of Beijing Jiaotong University, 2007, 31 (6): 35- 37.
doi: 10.3969/j.issn.1673-0291.2007.06.009
20 张卫国, 尚云鹏, 刘丽娜, 等. 电化学法制备Ni-W-P纳米线阵列电极及其催化析氢性能[J]. 物理化学学报, 2011, 27 (4): 900- 904.
doi: 10.3866/PKU.WHXB20110344
20 ZHANG W G , SHANG Y P , LIU L N , et al. Electrochemical preparation of a Ni-W-P nanowire array and its photoelectrocat-alytic activity for the hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011, 27 (4): 900- 904.
doi: 10.3866/PKU.WHXB20110344
21 王进.镍基Ni-Mo合金电极的制备及其电催化析氢性能研究[D].重庆: 重庆大学, 2013.
21 WANG J. Studies on the electrocatalytic hydrogen evolution of Ni based Ni-Mo alloy electrodes[D]. Chongqing: Chongqing University, 2013.
[1] 李明, 康永旺, 郭丰伟. 铌硅基超高温结构材料成形技术研究进展[J]. 材料工程, 2020, 48(11): 58-67.
[2] 周琦, 贾建刚, 臧树俊, 赵红顺, 吴海涛. Cr/Al复合合金化Fe3Si基有序合金及其有序度研究[J]. 材料工程, 2012, 0(1): 83-88.
[3] 王蓓蕾, 韩雅芳, 廖鸿. 微量碳对IC6合金真空熔炼过程及其对合金微观组织和力学性能的影响[J]. 材料工程, 2000, 0(3): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn