The precursor alloy with atomic fraction is Ni30-xFexMn70(x=0, 10, 20) by means of vacuum melting and solid solution, using the method of dealloying to nanoporous Ni and Ni-Fe alloy, with XRD, SEM phase compositions and microstructure were analyzed.The electrocatalytic performance for hydrogen evolution reaction was investigated by linear sweep voltammetry(LSV), electrochemical impedance spectroscopy(IMP), square wave potential technique(SWPT) and chrono potentiometry(CP).The results show that the nanoporous Ni-Fe alloy with lamellar structure is obtained by adding Fe, which improves the surface area of nanoporous Ni, and synergistic effect between Fe and Ni is produced, which can effectively improve the electrocatalytic activity of hydrogen evolution of the alloy.When the atom fraction of Fe is 10%, the surface area of nanoporous Ni-Fe alloy obtained by dealloying is the largest, and the electrocatalytic performance of hydrogen evolution is the best. Under the current density of 0.1A/cm2, hydrogen evolution overpotential is only 56mV, after continuous electrolysis for 10h, the alloy exhibits the high electrocatalytic activity and good electrochemical stability.
URSUA A , GANDIA L M , SANCHIS P . Hydrogen production from water electrolysis:current status and future trends[J]. Proceedings of the IEEE, 2012, 100 (2): 410- 426.
doi: 10.1109/JPROC.2011.2156750
2
KONG D S , WANG H T , LU Z Y , et al. CoSe2nanoparticles grown on carbon fiber paper:an efficient and stable electroca-talyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2014, 136 (13): 4897- 4900.
doi: 10.1021/ja501497n
3
MARINESCU S C , WINKLER J R , GRAY H B . Molecular mechanisms of cobalt-catalyzed hydrogen evolution[J]. Procee-dings of the National Academy of Sciences, 2012, 109 (38): 15127- 15131.
doi: 10.1073/pnas.1213442109
RAN M , WU Y H , HE H W . Effect of Fe on hydrogen evolution performance of Ni-based Ni-S alloy coating electrode[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23 (1): 63- 69.
doi: 10.3969/j.issn.1673-0224.2018.01.009
WANG H Z , ZHANG X Z , HUANG B , et al. Electrodeposition of Ni-Mo alloy from ionic liquids and its catalytic properties for hydrogen evolution[J]. Chemical Industry and Engineering, 2017, 34 (1): 53- 59.
QIN H S , WANG S L , JING Y Z , et al. Effects of different stirring methods on microstructure and electro-catalytic hydrogen evolution performance of Ni-Fe-Co coatings[J]. Surface Techno-logy, 2018, 47 (6): 38- 43.
8
McKONE J R , SADTLER B F , WERLANG C A , et al. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution[J]. ACS Catalysis, 2013, 3 (2): 166- 169.
doi: 10.1021/cs300691m
9
BADAWY W A , NADY H , NEGEM M . Cathodic hydrogen evolution in acidic solutions using electrodeposited nano-crys-talline Ni-Co cathodes[J]. International Journal of Hydrogen Energy, 2014, 39 (21): 10824- 10832.
doi: 10.1016/j.ijhydene.2014.05.049
10
BACHVAROY V D , ARNAUDOVA M H , RASHKOV R S , et al. Electrochemical deposition of alloys based on Ni-Fe-Co, containing W, P, and their characterization for hydrogen evol-ution reaction[J]. Bulgarian Chemical Communications, 2011, 43 (1): 115- 119.
11
HAN Q , JIN Y , PU N W , et al. Electrochemical evolution of hydrogen on composite La-Ni-Al/Ni-S alloy film in water electr-olysis[J]. Renewable Energy, 2010, 35 (12): 2627- 2631.
doi: 10.1016/j.renene.2010.03.015
12
PASEKA I . Hydrogen evolution reaction on Ni-P alloys:the internal stress and the activities of electrodes[J]. Electrochimica Acta, 2008, 53 (13): 4537- 4543.
doi: 10.1016/j.electacta.2008.01.045
13
MECH K , ZABINSKI P , MUCHA M , et al. Electrodeposition of catalytically active Ni-Mo alloys[J]. Archives of Metallurgy and Materials, 2013, 58 (1): 227- 229.
doi: 10.2478/v10172-012-0178-1
KONG Y P , CHEN J S , LIU K R , et al. Catalytic property of Ni-Mo-Co alloy coating prepared by pulse plating[J]. Journal of Northeastern University(Natural Science), 2016, 37 (6): 815- 819.
doi: 10.3969/j.issn.1005-3026.2016.06.012
15
HAN Q , CUI S , PU N W , et al. A study on pulse plating amorphous Ni-Mo alloy coating used as HER cathode in alkaline medium[J]. International Journal of Hydrogen Energy, 2010, 35 (11): 5194- 5201.
doi: 10.1016/j.ijhydene.2010.03.093
TAN X L , TANG Y J , LIU Y , et al. Progress in research on preparations of nanoporours metals by dealloying[J]. Materials Review, 2009, 23 (3): 68- 76.
17
ERLEBACHER J , AZIZ M J , KARMA A , et al. Evolution of nanoporosity in dealloying[J]. Nature, 2001, 410 (6827): 450- 453.
doi: 10.1038/35068529
ZHOU Q , WU H T , JIA J G , et al. Fabrication of nanoporous Ni with multi-hierarchical structure and its influencing factors[J]. Transactions of Materials and Heat Treatment, 2013, 34 (8): 11- 15.
HUANG J Z , XU Z , LI H L , et al. Preparation and chara-cterization of nanocrystalline Ni-Mo-Fe as cathode catalyst[J]. Journal of Beijing Jiaotong University, 2007, 31 (6): 35- 37.
doi: 10.3969/j.issn.1673-0291.2007.06.009
ZHANG W G , SHANG Y P , LIU L N , et al. Electrochemical preparation of a Ni-W-P nanowire array and its photoelectrocat-alytic activity for the hydrogen evolution reaction[J]. Acta Physico-Chimica Sinica, 2011, 27 (4): 900- 904.
doi: 10.3866/PKU.WHXB20110344
21
王进.镍基Ni-Mo合金电极的制备及其电催化析氢性能研究[D].重庆: 重庆大学, 2013.
21
WANG J. Studies on the electrocatalytic hydrogen evolution of Ni based Ni-Mo alloy electrodes[D]. Chongqing: Chongqing University, 2013.