Please wait a minute...
材料工程  2018, Vol. 46 Issue (10): 9-19    DOI: 10.11868/j.issn.1001-4381.2017.000972
  综述 本期目录 | 过刊浏览 | 高级检索 |
周锋, 任向红, 刘建友, 刘嫔
火箭军工程大学 装备管理工程系, 西安 710025
Development of Photocatalytic Degradation of Organic Pollutants in Water
ZHOU Feng, REN Xiang-hong, LIU Jian-you, LIU Pin
Department of Equipment Management Engineering, Rocket Force University of Engineering, Xi'an 710025, China
全文: PDF(1811 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 全球面临的能源危机和环境污染问题日益严峻,光催化技术的快速发展让人们看到了曙光,而光催化材料作为其基本要素则成了关注重点。本文主要从光催化降解水体有机污染物方面,综述了光催化技术的发展现状,9类光催化材料体系及其属性、作用机理与研究应用,以及对材料体系修饰改性的方法。最后,提出了现阶段材料体系依旧存在太阳能利用率低、量子产率低和光化学稳定性不足的问题,而金属有机骨架(MOF)新型材料体系和微纳米介孔、多级孔复合、Z型复合半导体等修饰改性方法为光催化材料体系的开发探索提供更广阔的空间。
E-mail Alert
关键词 可见光光催化降解有机污染物    
Abstract:The energy crisis and environmental pollution problem is increasingly serious on a global scale, however the rapid development of photocatalytic technology brings the dawn to solve the problem, and the photocatalytic materials system as a basic element has become the focus. The photocatalytic degradation of organic pollutants in water was focused in this article, and the development status of photocatalytic technology, nine types of photocatalytic materials and their properties, mechanism of action and the application of research, as well as modification methods of the materials were summarized. Finally, it was proposed that the materials still has the problems of low solar energy utilization, low quantum yield, and insufficient photochemical stability at the current stage, nevertheless the new material system of metal-organic framework (MOF) and the modification methods of micro/nano mesoporous, multi-hole composite, Z-scheme semiconductors provide a broader space for the exploration of photocatalytic materials.
Key wordsvisible-light    photocatalysis    degradation    organic pollutant
收稿日期: 2017-07-31      出版日期: 2018-10-17
中图分类号:  O643.36  
通讯作者: 任向红(1970-),女,教授,博士生导师,从事环境污染监测与防治的研究工作,联系地址:陕西省西安市灞桥区同心路2号(710025),     E-mail:
周锋, 任向红, 刘建友, 刘嫔. 光催化降解水体有机污染物的研究进展[J]. 材料工程, 2018, 46(10): 9-19.
ZHOU Feng, REN Xiang-hong, LIU Jian-you, LIU Pin. Development of Photocatalytic Degradation of Organic Pollutants in Water. Journal of Materials Engineering, 2018, 46(10): 9-19.
链接本文:      或
[1] LEE M R, 哲伦. 全球化的环境污染[J]. 资源与人居环境, 2009,23:54-56. LEE M R, ZHE L. The environmental pollution of globalization[J]. Resources and Habitant Environment, 2009, 23:54-56.
[2] UMAR I G, ABDUL H A. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:a review of fundamentals, progress and problems[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2008, 9(1):1-12.
[3] CHEN X B. Titanium dioxide nanomaterials and their energy applications[J]. Chinese Journal of Catalysis, 2009, 30(8):839-851.
[4] ZHAO K Y, FENG L Z, LI Z H, et al. Preparation, characterization and photocatalytic degradation properties of TiO2/calcium alginate composite film and the recovery of TiO2 nanoparticle[J]. RSC Advances, 2014, 4(93):51321-51329.
[5] ZHAO K Y, FENG L Z, LIN H Q, et al. Adsorption and photocatalytic degradation of methyl orange imprinted composite membranes using TiO2/calcium alginate hydrogel as matrix[J]. Catalysis Today, 2014, 236:127-134.
[6] CHEN X B, LIU L, YU P Y. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(60187):46-50.
[7] LIU X F, XING Z P, ZHANG H, et al. Fabrication of 3D mesoporous black TiO2/MoS2/TiO2 nanosheets for visible-light-driven photocatalysis[J]. Chemsuschem, 2016, 9(10):1118-1124.
[8] QIN Y L, SUN Z, ZHAO W, et al. Improved photocatalytic properties of ZnS/RGO nanocomposites prepared with GO solution in degrading methyl orange[J]. Nano-Structures & Nano-Objects, 2017, 10:176-181.
[9] YAN X,WU Z Y, HUANG C Y, et al. Hydrothermal synthesis of CdS/CoWO4 heterojunctions with enhanced visible light properties toward organic pollutants degradation[J]. Ceramics International, 2017, 43(7):5388-5395.
[10] ANJUM M, KUMAR R, BARAKAT M A. Visible light driven photocatalytic degradation of organic pollutants in wastewater and real sludge using ZnO-ZnS/Ag2O-Ag2S nanocomposite[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 77:227-235.
[11] DONG C, WU K L, WEI X W, et al. Nitrogen-doped graphene modified AgX@Ag (X=Br, Cl) composites with improved visible light photocatalytic activity and stability[J]. Applied Catalysis A:General, 2014, 488:11-18.
[12] WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80.
[13] 左士祥,陈瑶,吴孟德,等. Ag@AgBr/C3N4-凹凸棒石复合材料的制备及光催化脱硫性能[J].硅酸盐学报, 2017, 45(7):1-8. ZUO S X, CHEN Y, WU M D, et al. Preparation of Ag@AgBr/C3N4-attapulgite composite for photocatalytic desulfurization[J]. Journal of the Chinese Ceramic Society, 2017, 45(7):1-8.
[14] WANG C H, QIN D D, SHAN D L, et al. Assembly of g-C3N4-based typeⅡand Z-scheme heterojunction anodes with improved charge separation for photoelerojuncion water oxidation[J]. Physical Chemistry Chemical Physics, 2017, 6(19):4507-4515.
[15] WAN Z, ZHANG G K, WU X Y, et al. Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst:oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction[J]. Applied Catalysis B:Environmental, 2017, 207:17-26.
[16] YI Z G, YE J H, KIKUGAWA N, et al. Anorthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials, 2010, 9(7):559-564.
[17] NG H, CALVO C, FAGGIANI R. A new investigation of the structure of silver orthophosphate[J]. Acta Crystallographica Section B, 1978, 34(3):898-899.
[18] MA X G, LU B, LI D, et al. Origin of photocatalytic avtivation of silver orthophosphate from first-principles[J]. The Journal of Physical Chemistry C, 2011, 115(11):4680-4687.
[19] BI Y P, OUYANG S X, NAOTO U, et al. Facet effect of single-crystalline Ag3PO4 sub-microcrystals on photocatalytic properties[J]. Journal of the American Chemical Society, 2011, 133(17):6490-6492.
[20] 胡美琴. 杂多酸参与的可见光催化-敏化降解水体有机物[D].杭州:浙江大学, 2014. HU M Q. Photocatalytic and photosensitized degradation of organic pollutants in water with heteropoly acid under visible light irradiation[D]. Hangzhou:Zhejiang University, 2014.
[21] TAN W, LUO L J, ZHENG Y L. et al. Preparation and photocatalytic activity of heteropolyacid salt (POM)/TiO2 composites synthesized by solid phase combustion method[J]. Process Safety and Environmental Protection, 2016,104:558-563.
[22] JIE D, YANG Z Q, HE C, et al. UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation[J]. Journal of Colloid and Interface Science, 2017, 497:126-133.
[23] YANG H, HE X W, WANG F, et al. Doping copper into ZIF-67 for enhancing gas uptake capacity and visible-light-driven photocatalytic degradation of organic dye[J]. Journal of Materials Chemistry, 2012, 22(41):21849-21851.
[24] LI H, GUO W L, LIU Z, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369:130-136.
[25] LIANG R W, LUO S G, JING F F, et al. A simple strategy for fabrication of Pd@MIL-100(Fe) nanocomposite as a visible-light-driven photocatalyst for the treatment of pharmaceuticals and personal care products (PPCPs)[J]. Applied Catalysis B:Environmental, 2015, 176/177:240-248.
[26] LIANG R W, JING F F, SHEN L J, et al. M@MIL-100(Fe) (M=Au,Pd,Pt) nanocomposites fabricated by a facile photodeposition process:efficient visible-light photocatalysts for redox reactions in water[J]. Nano Research, 2015, 8(10):3237-3249.
[27] WU Y, LUO H J, WANG H. Synthesis of iron(Ⅲ)-based metal-organic framework/graphene oxide composites with increased photocatalytic performance for dye[J]. RSC Advances, 2014, 4(76):40435-40438.
[28] YANG C, YOU X, CHENG J H, et al. A novel visible-light-driven in-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin[J]. Applied Catalysis B:Environmental, 2017, 200:673-680.
[29] XU Y L, LV M M, YANG H B, et al. BiVO4/MIL-101 composite having the synergistically enhanced visible light photocatalytic activity[J]. RSC Advances, 2015, 5(54):43473-43479.
[30] GAO S T, LIU W H, SHANG N Z, et al. Integration of a plasmonic semiconductor with a metal-organic framework:a case of Ag/AgCl@ZIF-8 with enhanced visible light photocatalytic activity[J]. RSC Advances, 2014, 4(106):61736-61742.
[31] GAO Y W, LI S M, LI Y X, et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B:Environmental, 2017, 202:165-174.
[32] YANG Y F, WANG W J, LI H, et al. NH2-MIL-53(Al) nanocrystals anchored on the surface of RGO hollow spheres and its visible light degradation of methylene blue[J]. Materials Letters, 2017,197:17-20.
[33] DING Z X, CHEN X F, ANTONIETTI M, et al. Synthesis of transition metal-modified carbon nitride polymers for selective hydrocarbon oxidation[J]. Chemsuschem, 2011, 4(2):274-281.
[34] PAN H, ZHANG Y W, SHENOY V B, et al. Ab initio study on a novel photocatalyst:functionalized graphitic carbon nitride nanotube[J]. ACS Catalysis, 2011,1(2):99-104.
[35] YANG M, JIN X Q. Improvement of visible light-induced photocatalytic performance by Cr-doped SrTiO3-carbon nitride intercalation compound (CNIC) composite[J]. Journal of Central South University of Technology, 2016, 23:310-316.
[36] 金瑞瑞,游继光,张倩,等. Fe掺杂g-C3N4的制备及其可见光催化性能[J]. 物理化学学报, 2014, 30(9):1706-1712. JIN R R, YOU J G, ZHANG Q, et al. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Phys Chim Sin, 2014, 30(9):1706-1712.
[37] ZHOU B, ZHAO X, LIU H J, et al. Visible-light sensitive cobalt-doped BiVO4(Co-BiVO4) photocatalytic composites for the degration of methylene blue dye in dielute aqueous solution[J]. Applied Catalysis B:Enviromental, 2010, 99(1):214-221.
[38] PRABHAKARRAO N, CHANDRA M R, RAO T S. Synthesis of Zr doped TiO2/reduced graphene oxide (RGO) nanocomposite material for efficient photocatalytic degradation of Eosin Blue dye under visible light irradiation[J]. Journal of Alloys and Compounds, 2017, 496:596-606.
[39] LI N X, TENG H C, ZHANG L, et al. Synthesis of Mo-doped WO3 nanosheets with enhanced visiblelight-driven photocatalytic properties[J]. RSC Advances, 2015, 5(115):95394-95400.
[40] CHHABILAL R, YUWARAJ K K, TAE-HO K, et al. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment[J]. Applied Surface Science, 2017, 413:253-265.
[41] GAO J K, WANG J P, QIAN X F, et al. One pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating cu-melamine supramolecular network and its enhanced visible-light-driven photocatalysis[J]. Journal of Solid State Chemistry, 2015, 228:60-64.
[42] SUNDARARAJAN M, KENNEDY L J, NITHYA P, et al. Visible light driven photocatalytic degradation of rhodamine B using Mg doped cobalt ferrite spinel nanoparticles synthesized by microwave combustion method[J]. Journal of Physics and Chemistry of Solids, 2017, 108:61-75.
[43] XU J, QIN C X, HUANG Y L, et al. Narrow band gap and visible light-driven photocatalysis of V-doped Bi6Mo2O15 nanoparticles[J]. Applied Surface Science, 2017, 396:1403-1410.
[44] DHANDAPANI C, NARAYANASAMY R, KARTHICK S N, et al. Drastic photocatalytic degradation of methylene blue dye by neodymium doped zirconium oxide as photocatalyst under visible light irradiation[J]. Optik, 2016,127(22):10288-10296.
[45] ZHOU C,SHANG L,YU H, et al. Mesoporous plasmonic Au-loaded Ta2O5 nanocomposites for efficient visible light photocatalysis[J]. Catalysis Today, 2014, 225:158-163.
[46] ZAMEER H S, GE Y Z, YE W Y, et al. Visible light activation of SrTiO3 by loading Ag/AgX(X=Cl, Br) for highly efficient plasmon-enhanced photocatalysis[J]. Materials Chemistry and Physics, 2017, 198:73-82.
[47] MENG X C, ZHANG Z S. Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance[J]. Applied Surface Science, 2017, 392:169-180.
[48] 付诚新,张宁,吴义涛,等. Ta掺杂提高TiO2光催化效率及对微观结构的调制[J].中国粉体技术, 2017, 23(2):44-48. FU C X, ZHANG N, WU Y T, et al. Enhanced photocatalytic activity and modulated micro-structure of TiO2 by Ta doping[J]. China Powder Science and Technology, 2017, 23(2):44-48.
[49] WU S X, FANG J Z, XU W C, et al. Hydrothermal synthesis, characterization of visible-light-driven α-Bi2O3 enhanced by Pr3+ doping[J]. Journal of Chemical Technology And Biotechnology,2013, 88(10):1828-1835.
[50] WANG F Z, LI W J, GU S N, et al. Visible-light-driven heterojunction photocatalysts based on g-C3N4 decorated La2Ti2O7:effective transportation of photogenerated carriers in this heterostructure[J]. Catalysis Communications, 2017, 96:50-53.
[51] ANUKORN P, URIRAT C I, TITIPUN T, et al. High visible light photocatalytic activity of Eu-doped MoO3 nanobelts synthesized by hydrothermal method[J]. Materials Letters, 2016, 172:166-170.
[52] JIANG T S, ZHANG L, JI M al. Carbon nanotubes/TiO2 nanotubes composite photocatalysts for efficient degradation of methyl orange dye[J]. Particuology, 2013, 11(6):737-742.
[53] LIN Y H, HSUEH H T, CHANG C W, et al. The visible light-driven photodegradation of dimethyl sulfide on S-doped TiO2:characterization, kinetics, and reaction pathways[J]. Applied Catalysis B:Environmental, 2016, 199:1-10.
[54] MARIUSZ S, KATARZYNA S, ANNA L O. Non-metal doped TiO2 nanotube arrays for high efficiency photocatalytic decomposition of organic species in water[J]. Physica E:low-dimensional Systems and Nanostructures, 2016, 84:141-145.
[55] ZHANG L G, CHEN X F, GUAN J, et al. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity[J]. Materials Research Bulletin, 2013, 48(9):3485-3491.
[56] CAI A J, WANG Q, CHANG Y F, et al. Graphitic carbon nitride decorated with S,N co-doped graphene quantum dots for enhanced visible-light-driven photocatalysis[J]. Journal of Alloys and Compounds, 2017, 692:183-189.
[57] NIDHI S, DHIRAJ S. Visible light responsive Mn-S-co-doped TiO2 photocatalyst-synthesis, characterization and mechanistic aspect of photocatalytic degradation[J]. Separation and Purification Technology, 2017, 183:382-391.
[58] 陈其凤,史卫梅,姜东,等. 可见光响应的镍硅共掺杂二氧化钛及其光催化性能[J]. 化学学报, 2010, 68(4):301-308. CHEN Q F, SHI W M, JIANG D, et al. Visible-light-activated Ni-Si co-doped TiO2 with photocatalytic performance[J]. Acta Chimica Sinica, 2010, 68(4):301-308.
[59] 曲家惠, 陈金垒, 李红,等. 溶胶-凝胶法制备xLa-3%In-TiO2光催化材料[J].材料工程, 2017, 45(8):14-18. QU J H, CHEN J L, LI H, et al. xLa-3%In-TiO2 photocatalytic material prepared by sol-gel method[J]. Journal of Materials Engineering, 2017, 45(8):14-18.
[60] UMAIR A, AZAM K, WASEEM R, et al. Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity[J]. Catalysis Today, 2017, 284:169-178.
[61] MA X C, DAI Y, GUO M, et al. The role of effective mass of carrier in the photocatalytic behavior of silver halide-based Ag@AgX(X=Cl, Br, I):a theoretical study[J]. Chem Phys-Chem, 2012, 13(9):2304-2309.
[62] VINODKUMAR E, CRISTIANA D V, JENNY S, et al. Visible light activation of TiO2 photocatalysts:advances in theory and experiments[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2015, 25:1-29.
[63] WANG Q, ZHANG M, CHEN C C, et al. Photocatalytic aerobic oxidation of alcohols on TiO2:the acceleration effect of a Bronsted acid[J]. Angewandte Chemie International Edition, 2010, 49(43):7976-7979.
[64] 张光友,彭清涛,苏苏,等. 纳米氧化锌光催化降解偏二甲肼污水研究[J].导弹与航天运载技术, 2008(3):54-56. ZHANG G Y, PENG Q T, SU S, et al. Study of nano ZnO photocatalytic degradation of unsymmetrical dimethylhydrazine[J]. Missile And Space Vehcile, 2008(3):54-56.
[65] MEHDI A, HOJJATALLAH R M, NEMATOLLAH J, et al. Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite[J]. Journal of Environmental Management,2017,186(1):55-63.
[66] 张平, 莫尊理, 张春, 等. 磁响应性TiO2/石墨烯纳米复合材料的合成及光催化性能[J]. 材料工程, 2015, 43(3):72-77. ZHANG P, MO Z L, ZHANG C, et al. Preparation and photocatalytic properties of magnetic responsive TiO2/graphene nanocomposites[J]. Journal of Materials Engineering, 2015, 43(3):72-77.
[67] TANG H, FU Y H, CHANG S F, et al. Construction of Ag3PO4/Ag2MoO4 Z-scheme heterogeneous photocatalyst for the remediation of organic pollutants[J]. Chinese Journal of Catalysis, 2017,38(2):337-347.
[68] 李平,李海金, 涂文广,等. Z型光催化材料的研究进展[J].物理学报, 2015, 64(9):094209. LI P, LI H J, TU W G, et al. Photocatalytic application of Z-type system[J]. Acta Phys Sin, 2015, 64(9):094209.
[1] 李鹏鹏, 苏复, 顾正桂. CeO2-Ag/AgBr复合微球的合成及光催化性能[J]. 材料工程, 2020, 48(9): 69-76.
[2] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[3] 唐长斌, 卢宇轩, 王飞, 黄平, 于丽花, 薛娟琴. 用于水体中有机污染物电催化降解的非贵金属氧化物阳极的研究进展[J]. 材料工程, 2020, 48(6): 62-72.
[4] 杜晶晶, 赵军伟, 程晓民, 施飞. 高效光催化降解气相苯纳米TiO2微球的制备[J]. 材料工程, 2020, 48(5): 100-105.
[5] 余萍, 刘施羽, 王敏, 付蕊. 改进溶液燃烧法制备Fe3+掺杂Bi24O31Cl10及其光催化性能的研究[J]. 材料工程, 2020, 48(2): 38-45.
[6] 朱晓东, 王尘茜, 雷佳浩, 裴玲秀, 朱然苒, 冯威, 孔清泉. 锐钛矿型银掺杂二氧化钛紫外光及模拟太阳光光催化性能[J]. 材料工程, 2020, 48(2): 59-64.
[7] 李贺希, 陈静飞, 卢聪, 屈秀文, 项丰顺. 光催化降解化学毒剂研究进展[J]. 材料工程, 2020, 48(11): 9-24.
[8] 张钦库, 胡大伟, 闫翻辽, 左安志, 赵强. 米粒状CaIn2O4/In2O3的静电纺丝法制备及其光催化性能[J]. 材料工程, 2020, 48(11): 25-31.
[9] 柏源, 张超智, 孙红旗, 陈斌. 氮、银共掺杂TiO2可见光催化剂的制备及表征[J]. 材料工程, 2020, 48(11): 32-38.
[10] 李涛, 李慧敏, 卢松涛, 吴晓宏. 炭黑/黑色TiO2复合材料的制备及其光催化性能[J]. 材料工程, 2020, 48(11): 39-45.
[11] 万天, 宋述鹏, 王今朝, 周和荣, 毛雨旭, 熊少聪, 李梦君. 生物医用镁合金腐蚀行为的研究进展[J]. 材料工程, 2020, 48(1): 19-26.
[12] 李金星, 汪巧仙, 郭贵宝, 刘金彦. 炭吸附共沉淀纳米铁酸钐的制备及其可见光催化性能[J]. 材料工程, 2020, 48(1): 150-155.
[13] 曾宝平, 贾瑛, 许国根, 李明, 冯锐. CTAB作用下TiO2/g-C3N4的制备及光催化降解偏二甲肼废水[J]. 材料工程, 2019, 47(9): 139-144.
[14] 亓淑艳, 王德朋, 赵亚栋, 胥焕岩. 电气石/ZnO复合材料光催化机制[J]. 材料工程, 2019, 47(9): 145-151.
[15] 赵晓华, 魏崇, 苏帅, 崔佳宝, 周建国, 李彩珠, 娄向东. Ag3PO4/ZnO@碳球三元异质结的合成及可见光催化性能[J]. 材料工程, 2019, 47(7): 76-83.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持