Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (12): 54-60    DOI: 10.11868/j.issn.1001-4381.2017.000982
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
电子束辐照含铍聚碳硅烷制备含铍碳化硅纤维
朱文华1,2, 岳建岭1,2, 黄小忠1,2, 王春齐1,2, 胡思闽1,2, 王畅1,2
1. 中南大学 航空航天学院, 长沙 410083;
2. 新型特种纤维及其复合材料湖南省重点实验室, 长沙 410083
Synthesis of Silicon Carbide Fiber Containing Beryllium from Polyberylliumocarbosilane Using Electron Beam Irradiation
ZHU Wen-hua1,2, YUE Jian-ling1,2, HUANG Xiao-zhong1,2, WANG Chun-qi1,2, HU Si-min1,2, WANG Chang1,2
1. School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;
2. Key Laboratory for Advanced Fibers and Composites of Hunan Province, Changsha 410083, China
全文: PDF(34493 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以含铍聚碳硅烷(PBeCS)为原料,在N2:O2的流量比为200:1的气氛下用电子加速器对PBeCS先驱丝进行辐照交联,然后在N2下高温烧结制备含铍碳化硅(SiC)纤维。研究了辐照剂量对先驱丝的化学结构、凝胶含量、含氧量及烧成SiC纤维抗拉强度的影响。结果表明:在有氧的气氛下辐照交联主要是Si-H与O2反应生成Si-OH,然后Si-OH发生脱水缩合反应生成Si-O-Si,Si-H与Si-CH3生成Si-CH2-Si;1250℃烧成制得的含铍碳化硅纤维具有光滑的表面,形成了β-SiC晶型,纤维的氧的原子分数低于5%,C/Si比接近1:1,纤维的平均强度为1.8GPa,平均弹性模量为179GPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱文华
岳建岭
黄小忠
王春齐
胡思闽
王畅
关键词 含铍聚碳硅烷电子束辐照交联含铍碳化硅纤维    
Abstract:Polyberylliumocarbosilane(PBeCS) precursor fibers were irradiated using electron beam in an atmosphere with N2:O2 rate of 200:1,They were then pyrolyzed at high temperature under nitrogen to give silicon carbide fiber containing beryllium(SiC(Be)).The effect of irradiation dose on the chemical structure,gel content,oxygen content,and tensile strength was studied.The results show that Si-H bonds in the molecular structure of PBeCS react with oxygen in the electron beam irradiation under low oxygen partial pressure bombarding to get Si-OH groups,and then Si-OH groups undergo dehydration condensation reactions to produce Si-O-Si linkage,Si-H and Si-CH3 decompose and polymerize to produce Si-CH2-Si linkage,resulting in cross-linking.SiC(Be) fibers prepared at 1250℃ have smooth and dense surface.XRD curve reveals that β-SiC microcrystals are formed in the fibers.The atom fraction of oxygen of the fiber is less than 5%,and the molar ratio of C to Si is close to 1:1,and the average tensile strength and tensile modulus are 1.8 GPa and 179 GPa,respectively.
Key wordspolyberylliumocarbosilane    electron beam irradiation    curing    silicon carbide fiber containing beryllium
收稿日期: 2017-08-02      出版日期: 2018-12-18
中图分类号:  TQ343  
通讯作者: 岳建岭(1979-),男,副教授,博士,研究方向:高性能纤维及其复合材料,联系地址:湖南省长沙市岳麓区中南大学南校区第二教学楼401(410083),E-mail:jlyue2010@csu.edu.cn     E-mail: jlyue2010@csu.edu.cn
引用本文:   
朱文华, 岳建岭, 黄小忠, 王春齐, 胡思闽, 王畅. 电子束辐照含铍聚碳硅烷制备含铍碳化硅纤维[J]. 材料工程, 2018, 46(12): 54-60.
ZHU Wen-hua, YUE Jian-ling, HUANG Xiao-zhong, WANG Chun-qi, HU Si-min, WANG Chang. Synthesis of Silicon Carbide Fiber Containing Beryllium from Polyberylliumocarbosilane Using Electron Beam Irradiation. Journal of Materials Engineering, 2018, 46(12): 54-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000982      或      http://jme.biam.ac.cn/CN/Y2018/V46/I12/54
[1] 邹世钦,张长瑞,周新贵,等.连续纤维增强SiCf/SiC陶瓷复合材料的发展[J].材料导报,2003,17(8):61-64. ZOU S Q,ZHANG C R,ZHOU X G,et al.Development of SiCf/SiC continuous fiber reinforced ceramic matrix composites[J].Materials Review,2003,17(8):61-64.
[2] KAMITZ M A,CRAIG D F,RICHLEN S L.Continuous fiber ceramic composite program[J].American Ceramic Society Bulletin,1991,70(3):430-435.
[3] FRANK K.Preform fiber architecture for ceramic-matrix composites[J].American Ceramic Society Bulletin,1989,68(2):401-414.
[4] 吴人洁.金属基复合材料研究进展[J].复合材料学报,1987,4(3):1-10. WU R J.Recent development metal matrix composites[J].Acta Materiae Compositae Sinica,1987,4(3):1-10.
[5] YAJIMA S,HAYASHI J,OMORI M,et al.Development of a silicon carbide fibre with high tensile strength[J].Nature,1976,261(5562):683-685.
[6] 黎阳.含异质元素聚碳硅烷的制备及应用研究进展[J].化工新型材料,2012,40(7):148-151. LI Y.Preparation and application of heterogeneity-element containing polycarbosilane[J].New Chemical Materials,2012,40(7):148-151.
[7] 余煜玺,李效东,曹峰,等.先驱体法制备含异质元素SiC陶瓷纤维的现状与进展[J].硅酸盐学报,2003,31(4):371-375. YU Y X,LI X D,CAO F,et al.Advances in the polymer-derived SiC fibers including hetero-element[J].Journal of the Chinese Ceramic Society,2003,31(4):371-375.
[8] ISHIKAWA T.Recent developments of the SiC fiber Nicalon and its composites,including properties of the SiC fiber Hi-Nicalon for ultra-high temperature[J].Composites Science and Technology,1994,51(2):135-144.
[9] CHU Z Y,FENG C X,SONG Y C,et al.Initiation and propagation behaviors of interior micro flaws in the pyrolysis of an air-cured polycarbosilane precursor fiber[J].Journal of Materials Science,2004,39(8):2827-2833.
[10] VAHLAS C,MONTHIOUX M.On the thermal degradation of lox-M tyranno fibres[J].Journal of the European Ceramic Society,1995,15(5):445-453
[11] SHIBUYA M,YAMAMURA T.Characteristics of a continuous Si-Ti-C-O fibre with low oxygen content using an organometallic polymer precursor[J].Journal of Materials Science,1996,31(12):3231-3235
[12] SUGIMOTO M,SHIMOO T,OKAMURA K,et al.Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation:I evolved gas analysis[J].Journal of the American Ceramic Society,1995,78(4):1013-1017.
[13] OKAMURA K,MATSUZAWA T,HASEGAWA Y.γ-ray irradiation curing on polycarbosilane fibers as the precursor of SiC fibers[J].J Mater Sci Lett,1985,4(1):55-57.
[14] OKAMURA K,SEGUCHI T.Application of radiation curing in the preparation of polycarbosilane-derived SiC fibres[J].J Inorg Organomet Polym,1992,2(1):171-179.
[15] 许云书,宋永才,傅依备,等.电子束辐照聚碳硅烷热解合成SiC陶瓷材料:I空气中辐照产物的热解特性研究[J].辐照研究与辐照工艺学报,1998,16(1):1-4. XU Y S,SONG Y C,FU Y B,et al.Synthesis of SiC ceramics by pyrolysis of electron beam irradiated polycarbosilane:I pyrolysis of polycarbosilane irradiated in air[J].Journal of Radiation Research and Radiation Processing,1998,16(1):1-4.
[16] 童林剑,苏智明,龚朝阳,等.含氧气氛下电子束辐照聚碳硅烷制备碳化硅纤维[J].硅酸盐学报,2009,37(7):1160-1164. TONG L J,SU Z M,GONG C Y,et al.Synthesis of silicon carbide fiber from polycarbosilane using electron beam irradiation under low oxygen partial pressure[J].Journal of the Chinese Ceramic Society,2009,37(7):1160-1164.
[17] SUZUKI K,KUMAGAWA K,KAMIYAMA T.Characterization of the medium-range structure of Si-Al-C-O,Si-Zr-C-O,Si-Al-C-O Tyranno fibers by small X-ray scattering[J].Journal of Materials Science,2002,37(5):949-953.
[18] YAMAOKA H,SHIBUYA M.Oxidation resistance of Si-M(M=Ti,Zr)-C-O fiber[J].Journal of Sex Research,2010,109(1267):217-221.
[19] 段曦东,李文芳,周珊,等.含铍碳化硅陶瓷先驱体聚铍碳硅烷的合成[J].功能材料,2012,43(12):1647-1650. DUAN X D,LI W F,ZHOU S,et al.Synthesis of precursor of SiC ceramic containing beryllium[J].Journal of Functional Materials,2012,43(12):1647-1650.
[20] 廖潘兴,黄小忠,杜作娟,等.含铍聚碳硅烷合成工艺的研究[J].功能材料,2015,46(15):15148-15152. LIAO P X,HUANG X Z,DU Z J,et al.Synthesis process of polyberylliumocarbosilane[J].Journal of Functional Materials,2015,46(15):15148-15152.
[21] HASEGAWA Y.Synthesis of continuous silicon carbide fibre,part 6.pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre[J].Journal of Materials Science,1989,24(4):1177-1190.
[22] SEGUCHI T.New trend of radiation to polymer modification-irradiation in oxygen free atmosphere and at elevated temperature[J].Radiation Physics&Chemistry,2000,57:367-371.
[23] PORTE L,SARTRE A.Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre[J].Journal of Materials Science,1989,24(1):271-275.
[24] SIMON G,BUNSELL A R.Creep behaviour and structural characterization at high temperatures of Nicalon SiC fibres[J].Journal of Materials Science,1984,19(11):3658-3670
[25] SHIMOO T,TOYODA F,OKAMURA K.Oxidation kinetics of low-oxygen silicon carbide fiber[J].Journal of Materials Science,2000,35(13):3301-3306.
[26] HOCHET N,BERGER M H,BUNSELL A R.Microstructural evolution of the latest generation of small-diameter SiC-based fibres tested at high temperatures[J].Journal of Microscopy,2010,185(2):243-258
[27] 李光亮.有机硅高分子化学[M].北京:科学出版社,1997. LI G L.Silicone polymer chemistry[M].Beijing:Science Press,1997.
[1] 杜歌, 魏莉, 刘自双, 武继民, 陈子浩, 田丰. γ辐射和EDC/NHS改性对胶原壳聚糖支架性能的影响[J]. 材料工程, 2020, 48(5): 106-111.
[2] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[3] 候冰娜, 李进, 倪凯, 韩超越, 沈惠玲, 赵琳琳, 李征征. 光交联羧甲基壳聚糖水凝胶的制备及药物缓释性能研究[J]. 材料工程, 2020, 48(11): 76-84.
[4] 桑伟, 周岚, 冯新星, 张建春. 电子束辐照诱导丙烯酸接枝尼龙66织物的改性研究[J]. 材料工程, 2017, 45(10): 111-116.
[5] 马烽, 陆丰艳, 秦岩, 王睿. N,O-羧甲基壳聚糖磁性复合微球的制备与表征[J]. 材料工程, 2014, 0(8): 41-45.
[6] 徐志伟, 郭启微, 王晓生, 吴宁, 吴晓青, 陈利. 电子束辐照对碳纳米管结构及性能的影响[J]. 材料工程, 2010, 0(12): 92-97.
[7] 谢克磊, 曲春艳, 马瑛剑, 杨海冬. 交联剂对PMI泡沫塑料结构与性能的影响[J]. 材料工程, 2009, 0(4): 23-27,30.
[8] 赵原璧, 邱祖民, 刘钟薇, 黄佳英. 药用壳聚糖磁性复合微球的制备及特性[J]. 材料工程, 2008, 0(10): 358-362.
[9] 秦明, 益小苏. 可控交联聚芳醚酮热塑性复合材料的制备及电子束辐照对其结构和性能的影响[J]. 材料工程, 2004, 0(2): 18-21,25.
[10] 郑俊萍, 奚利飞, 杨学稳, 姚康德. 不同交联方式的明胶及明胶/蒙脱土纳米复合材料的力学性能[J]. 材料工程, 2003, 0(9): 26-29.
[11] 张广成, 何庆龙, 刘铁民, 项士新. 硅烷交联聚乙烯/纳米蒙脱土复合材料的研究[J]. 材料工程, 2003, 0(11): 3-6.
[12] 秦明, 益小苏. 可控交联聚芳醚酮改性电子束固化环氧树脂结构与性能的研究[J]. 材料工程, 2003, 0(11): 28-31.
[13] 张剑锋, 郑强, 曹苏华, 益小苏. 电子束辐照对高密度聚乙烯/炭黑导电复合材料电阻率的影响[J]. 材料工程, 1999, 0(2): 12-15,18.
[14] 王磊. 交联有机玻璃的热性能及其应用[J]. 材料工程, 1999, 0(12): 16-18.
[15] 张剑锋, 郑强, 郑彩霞, 益小苏. 聚乙烯辐照交联的研究进展[J]. 材料工程, 1999, 0(1): 42-45,34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn