Please wait a minute...
材料工程  2018, Vol. 46 Issue (4): 23-30    DOI: 10.11868/j.issn.1001-4381.2017.000986
  综述 本期目录 | 过刊浏览 | 高级检索 |
舒展, 张毅, 谢虹忆, 欧阳静, 杨华明
中南大学 资源加工与生物工程学院, 长沙 410083
Research Progress of Silicate Clay Minerals in Antibacterial Applications
SHU Zhan, ZHANG Yi, XIE Hong-yi, OUYANG Jing, YANG Hua-ming
School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
全文: PDF(2750 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 硅酸盐黏土矿物独特的化学组成成分、微观形貌结构以及物理化学特性影响其在抗菌方面的应用。化学组成成分中部分抗菌元素可通过化学渗透作用于细菌细胞内及细胞质产生抗菌效果,表面电荷调节可增强硅酸盐黏土矿物与细菌表界面作用且达到抗菌药剂控释要求,特殊形貌特征可用于装载纳米抗菌剂提高抗菌稳定性并降低生物毒副作用,构建稳定、优异且长效的抗菌复合材料。本文综述探究了硅酸盐黏土矿物的化学渗透及物理吸附两种抗菌机理,硅酸盐黏土矿物基复合抗菌材料的协同作用机制及其抗菌制品示例,探讨硅酸盐黏土矿物在抗菌复合材料工业化应用中的可行性。
E-mail Alert
关键词 硅酸盐黏土矿物物理吸附化学渗透抗菌复合材料抗菌制品    
Abstract:Silicate clay minerals possess unique chemistry compositions, micro morphology structures, and physicochemical properties, which make them useful in a broad application in antibacterial fields. Through chemosmosis, some antibacterial elements in silicate clay minerals can directly react with the cell membrane and cytoplasm. By controllable adjustment of the surface charge, silicate clay minerals can be adsorbed to the surface of the bacteria and release the antibacterial agents with controllable amount. The micro morphology structures enable silicate clay minerals to serve as a matrix to load the antibacterial inorganic and organic materials, which can improve the antibacterial effects and undermine the bio-toxicity to prepare the antibacterial nanocomposites with high stability, strong and durable antibacterial effect. The two antibacterial mechanisms of silicate clay minerals including chemiosmosis and physical absorption were reviewed in this paper, the synergistic effects and antibacterial product applications of antibacterial nanocomposites based on silicate clay minerals were further discussed to explore the feasibility of silicate clay minerals in industrial applications of the antibacterial fields.
Key wordssilicate clay mineral    physical absorption    chemiosmosis    antibacterial nanocomposite    antibacterial product
收稿日期: 2017-08-10      出版日期: 2018-04-14
中图分类号:  TB3  
通讯作者: 张毅(1986-),男,副教授,硕士生导师,主要从事矿物生物医药研究,联系地址:湖南省长沙市中南大学资源加工与生物工程系(410083),     E-mail:
舒展, 张毅, 谢虹忆, 欧阳静, 杨华明. 硅酸盐黏土矿物在抗菌方面研究进展[J]. 材料工程, 2018, 46(4): 23-30.
SHU Zhan, ZHANG Yi, XIE Hong-yi, OUYANG Jing, YANG Hua-ming. Research Progress of Silicate Clay Minerals in Antibacterial Applications. Journal of Materials Engineering, 2018, 46(4): 23-30.
链接本文:      或
[1] BIDDECI G, CAVALLARO G, BLASI F D, et al. Halloysite nanotubes loaded with peppermint essential oil as filler for functional biopolymer film[J]. Carbohydrate Polymers, 2016,152:548-557.
[2] 邓城,漆小鹏,李倩,等. 沉淀法与水热法合成载银羟基磷灰石及其抗菌性能[J]. 材料工程,2017,45(4):113-120. DENG C, QI X P, LI Q, et al. Synthesis and antibacterial property of silver doped hydroxyapatatie by precipitation and hydrothermal method[J]. Journal of Materials Engineering, 2017,45(4):113-120.
[3] BEHROOZIAN S, SVENSSONS L, DAVIES J. Kisameet clay exhibits potent antibacterial activity against the ESKAPE pathogens[J].MBIO, 2016,7(1):e01842-15.
[4] 李雅琳,张健,平清伟,等. 硅藻土基无机抗菌材料的制备与性能[J].材料工程,2016,44(3):72-76. LI Y L, ZHANG J, PING Q W, et al. Preparation and properties of diatomite based antibacterial inorganic material[J]. Journal of Materials Engineering,2016,44(3):72-76.
[5] MORRISON K D, MISRA R, WILLIAMS L B. Unearthing the antibacterial mechanism of medicinal clay:ageochemical approach to combating antibiotic resistance[J]. Scientific Reports, 2016,6:19043.
[6] XU W R, XIE W J, HUANG X Q, et al. The graphene oxide and chitosan biopolymer loads TiO2 for antibacterial and preservative research[J]. Food Chemistry, 2017,221:267-277.
[7] 高党鸽,陈琛,吕斌,等. 原位制备季铵盐聚合物/纳米ZnO复合抗菌剂[J]. 材料工程,2015,43(6):38-45. GAO D G, CHEN C, LV B, et al. Synthesis polymer quaternary ammonium salt/nano-ZnO composite antibacterial agent via in-situ method[J]. Journal of Materials Engineering,2015,43(6):38-45.
[8] AZAM A, AHMED A S, OVES M, et al. Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria:a comparative study[J]. International Journal of Nanomedicine, 2012,7:6003-6009.
[9] 叶伟杰,陈楷航,蔡少龄,等. 纳米银的合成及其抗菌应用研究进展[J]. 材料工程,2017,45(9):22-30. YE W J, CHEN K H, CAI S L, et al. Progress in research on systhesis and antibacterial applications of silver nanoparticles.[J]. Journal of Materials Engineering, 2017,45(9):22-30.
[10] MUCCI M, NOYMA N P, DEMAGALHAES L, et al. Chitosan as coagulant on cyanobacteria in lake restoration management may cause rapid cell lysis[J]. Water Research, 2017,118:121-130.
[11] WANG H, WANG Z M, YAN X, et al. Novel organic-inorganic hybrid polyvinylidene fluoride ultrafiltration membranes with antifouling and antibacterial properties by embedding N-halamine functionalized silica nanospheres[J]. Journal of Industrial and Engineering Chemistry, 2017,52:295-304.
[12] IOANNIDOU E, FRONTISTIS Z, ANTONOPOULOU M, et al. Solar photocatalytic degradation of sulfamethoxazole overtungsten-modified TiO2[J]. Chemical Engineering Journal, 2017,318:143-152.
[13] LI Y, ZHANG W, NIU J F. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles[J]. ACS Nano, 2012,6(6):5164-5173.
[14] XIA T, KOVOCHICH M, LIONG M. Comparison of the mechanism of toxicityof zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties[J]. ACS Nano, 2008, 2(8):2121-2134.
[15] SHU Z, ZHANG Y, OUYANG J, et al. Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite[J]. Applied Surface Science, 2017, 420:833-838.
[16] SHU Z, ZHANG Y, YANG Q, et al. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergisticallyenhanced antibacterial activity[J]. Nanoscale Research Letters, 2017,12(1):135.
[17] HUO C L, YANG H M. Synthesis and characterization of ZnO/palygorskite[J]. Applied Clay Science, 2010,50(3):362-366.
[18] HU P W, YANG H M. Insight into the physicochemical aspects of Kaolins with different morphologies[J] Applied Clay Science, 2013,74:58-65.
[19] NIU M Y, YANG H M, ZHANG X C, et al. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2capture[J]. ACS Applied Materials &Interfaces, 2016,8(27):17312-17320.
[20] LONG H, WU P X, ZHU N W. Evaluation of Cs+ removal from aqueous solution by adsorption ethylamine-modified montmorillonite[J]. Chemical Engineering Journal, 2013,225:237-244.
[21] AYODELE O B, HAMEED B H. Development of kaolinite supported ferric oxalate heterogeneous catalyst for degradation of 4-nitrophenol in photo-fenton process[J]. Applied Clay Science, 2013,83/84:171-181.
[22] PAPOULIS D, KOMARNENI S, NIKOLOPOULOU A, et al. Palygorskite-and halloysite-TiO2 nanocomposites:synthesis and photocatalytic activity[J]. Applied Clay Science, 2010,50(1):118-124.
[23] PENG K, FU L J, OUYANG J, et al. Emerging parallel dual 2D composites:natural clay mineral hybridizing MoS2 and interfacial structure[J]. Advanced Functional Materials, 2016, 26:2666-2675.
[24] PENG K, FU L J, YANG H M, et al. Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity[J]. Nano Research, 2017,10(2):570-583.
[25] ZHANG Y, LONG M, HUANG P, et al. Intercalated 2D nanoclay for emerging drug delivery in cancer therapy[J]. Nano Research.DOI:10.1007/s12274-017-1466-x.
[26] ZHANG Y, LONG M, HUANG P, et al. Emerging integrated nanoclay-facilitated drug delivery system for papillary thyroid cancer therapy[J]. Scientific Reports, 2016,6:33335.
[27] YANG J, WU Y P, SHEN Y, et al. Enhanced therapeutic efficacy of doxorubicin for breast cancer using chitosan oligosaccharide-modified halloysite nanotubes[J]. ACS Applied Materials &Interfaces, 2016,8(40):26578-26590.
[28] PING Y, HU X R, YAO Q, et al. Engineering bioinspired bacteria-adhesive clay nanoparticles with a membrane-disruptive property for the treatment of helicobacter pylori infection[J]. Nanoscale, 2016,8(36):16486-16498.
[29] LONG M, ZHANG Y, SHU Z, et al. Fe2O3 nanoparticles anchored on 2D kaolinite with enhanced antibacterial activity[J]. Chemical Communications, 2017,53(46):6255-6258.
[30] SANCHEZ-FERNANDEZ A,PENA-PARAS L, VIDALTAMAYO R, et al. Synthesization, characterization, and in vitro evaluation of cytotoxicity of biomaterials based on halloysite nanotubes[J]. Materials, 2014,7(12):7770-7780.
[31] TOYOTA Y, MATSUURA Y, ITO M, et al. Cytotoxicity of natural allophane nanoparticles on human lung cancer A549 cells[J]. Applied Clay Science, 2017,135:485-492.
[32] HUANG B, LIU M X, LONG Z R, et al. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels[J]. Materials Science & Engineering C, 2017,70:303-310.
[33] WIESSNER J H, MANDEL N S, SOHNLE P G, et al. Effect of particle size on quartz-induced hemolysis and on lung inflammationand fibrosis[J]. Experimental Lung Research, 1989,15:801-812.
[34] LI P R, WEI J C, CHIU Y F, et al. Evaluation on cytotoxicity and genotoxicity of the exfoliated silicate nanoclay[J]. ACS Applied Materials &Interfaces, 2010,2(6):1608-1613.
[35] VERGARO V, ABDULLAYEV E, LVOV Y M, Cytocompatibility and uptake of halloysite clay nanotubes[J]. Biomacromolecules, 2010,11:820-826.
[36] MALEK N A N N, RAMLI N I. Characterization and antibacterial activity of cetylpyridinium bromide (CPB) immobilized on kaolinite with different CPB loadings[J]. Applied Clay Science, 2015,109/110:8-14.
[37] WU T, XIE A G, TAN S Z, et al. Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on escherichia coli and staphylococci aureus[J]. Colloids and Surfaces B, Biointerfaces, 2011,86(1):232-236.
[38] WILLIAMS L B, METGE D W, EBERL D D, et al. What makes a natural clay antibacterial?[J]. Environmental Science &Technology, 2011,45(8):3768-3773.
[39] LONDONO S C, HARTNETT H E, WILLIAMS L B. Antibacterial activity of aluminum in vlay from the colombian amazon[J]. Environmental Science &Technology, 2017,51(4):2401-2408.
[40] LUQUE N B, MUJIKA J I, REZABAL E, et al. Mapping the affinity of aluminum(Ⅲ) for biophosphates:interaction mode and binding affinity in 1:1 complexes[J]. Physical Chemistry Chemical Physics, 2014,16(37):20107-20119.
[41] WARNES S L, CAVES V, KEEVIL C W. Mechanism of copper surface toxicity in escherichia coli O157:H7 and salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria[J]. Environmental Microbiology, 2012,14(7):1730-1743.
[42] JIANG J, ZHANG C, ZENG G M, et al. The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay[J]. Journal of Hazardous Materials, 2016,317:416-429.
[43] MOTSHEKGA S C, RAY S S, ONYANGO M S, et al. Microwave-assisted synthesis, characterization and antibacterial activity of Ag/ZnO nanoparticles supported bentonite clay[J]. Journal of Hazardous Materials, 2013,262:439-446.
[44] IBARGUREN C, NARANJO P M., STOTZEL C, et al. Adsorption of nisin on raw montmorillonite[J]. Applied Clay Science, 2014,90:88-95.
[45] SUN J J, YENDLURI R, LIU K, et al. Enzyme-immobilized clay nanotube-chitosan membranes with sustainable biocatalytic activities[J]. Physical Chemistry Chemical Physics, 2017,19(1):562-567.
[46] CAI X, ZHANG J L, OUYANG Y, et al. Bacteria-adsorbed palygorskite stabilizes the quaternary phosphonium salt with specific-targeting capability, long-term antibacterial activity, and lower cytotoxicity[J]. Langmuir, 2013,29(17):5279-5285.
[47] SADEGH-HASSANI F, MOHAMMADI NAFCHI A. Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay[J]. International Journal of Biological Macromolecules, 2014,67:458-462.
[48] MARTUCCI J F, RUSECKAITE R A. Antibacterial activity of gelatin/copper (Ⅱ)-exchanged montmorillonite films[J]. Food Hydrocolloids, 2017,64:70-77.
[49] ABREU A S, OLIVEIRA M, DES A, et al. Antimicrobial nanostructured starch based films for packaging[J]. Carbohydrate Polymers, 2015,129:127-134.
[50] MAKAREMI M, PASBAKHSH P, CAVALLARO G, et al. Effect of morphology and size of halloysite nanotubes on functional pectin bionanocomposites for food packaging applications[J]. ACS Applied Materials &Interfaces, 2017,9(20):17476-17488.
[51] UI-ISLAM M, KHAN T, KHATTAK W A, et al. Bacterial cellulose-MMTs nanoreinforced composite films[J].Cellulose, 2013,20:589-596.
[52] GORRASI G. Dispersion of halloysite loaded with natural antimicrobials into pectins:characterization and controlled release analysis[J]. Carbohydrate Polymers, 2015,127:47-53.
[53] MARYAN A S, MONTAZER M. Natural and organo-montmorillonite as antibacterial nanoclays for cotton garment[J]. Journal of Industrial and Engineering Chemistry, 2015,22:164-170.
[1] 胡智瑜, 马青松. 异质元素改性聚硅氧烷衍生SiOC陶瓷研究进展[J]. 材料工程, 2019, 47(7): 19-25.
[2] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[3] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[4] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[5] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[6] 张平生, 辛勇, 曹传亮, 艾凡荣. 壳聚糖/羟基磷灰石表面修饰聚己内酯多孔骨支架的制备及性能[J]. 材料工程, 2019, 47(7): 64-70.
[7] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[8] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[9] 周怡然, 刘虎, 杨金华, 姜卓钰, 吕晓旭, 焦健. 熔融渗透工艺制备SiC-TiSi2复相陶瓷的反应机理[J]. 材料工程, 2019, 47(6): 88-93.
[10] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[11] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[12] 党赏, 李艳国, 邹芹, 王明智, 熊建超, 罗文奇. 机械合金化和粉末冶金法制备Fe-Mn-Si基形状记忆合金的研究进展[J]. 材料工程, 2019, 47(5): 18-25.
[13] 魏泽昌, 蔡晨阳, 王兴, 付宇. 生物可降解高分子增韧聚乳酸的研究进展[J]. 材料工程, 2019, 47(5): 34-42.
[14] 徐顺建. 添加剂辅助水热热解制备尺寸可控纳米孔碳微球[J]. 材料工程, 2019, 47(5): 137-144.
[15] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持