Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (6): 152-160    DOI: 10.11868/j.issn.1001-4381.2017.000993
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理温度对新型马氏体时效不锈钢微观组织和性能的影响
王飞云, 金建军, 江志华, 王晓震, 胡春文
中国航发北京航空材料研究院, 北京 100095
Effect of heat treatment temperature on microstructure and properties of new maraging stainless steel
WANG Fei-yun, JIN Jian-jun, JIANG Zhi-hua, WANG Xiao-zhen, HU Chun-wen
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(13950 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对一种以Al作为主要强化元素的新型马氏体时效不锈钢,通过力学性能测试、光学显微镜观察和透射电子显微分析方法,研究不同的热处理温度对实验钢力学性能和微观组织的影响。结果表明:该实验钢的抗拉强度最高可达1876MPa,屈服强度可达1762MPa,具有良好的强韧性配合。固溶处理后形成了具有高密度位错的细小板条马氏体组织,在时效过程中,马氏体基体上弥散析出的NiAl相使其强度得到大幅度的提升。随着时效温度的提高,NiAl析出相颗粒逐渐长大粗化,从而使强度在到达峰值后迅速下降,出现了过时效现象。实验钢经过820℃固溶+(-70℃)冷处理+540℃时效处理后可获得良好的综合力学性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王飞云
金建军
江志华
王晓震
胡春文
关键词 马氏体时效不锈钢Al元素强化NiAl析出相时效处理力学性能    
Abstract:The mechanical properties and microstructure of tested steel strengthened via Al at different solution and aging temperatures were studied by mechanical property test, optical microscope and transmission electron microscope. The results show that the tensile strength and yield strength of tested steel reach up to 1876MPa and 1762MPa respectively, with the higher strength and better match of toughness. Fine lath martensite with high-density dislocations is formed after solution and the precipitation of dispersive NiAl phase from matrix makes the strength greatly improved during the aging. The strength of tested steel decreases rapidly after reaching peak due to the coarsening of particles, namely, overaging phenomenon occurs. The optimum comprehensive mechanical properties of tested steel can be obtained after solution treatment at 820℃, cold treatment at -70℃ and aging treatment at 540℃.
Key wordsmaraging stainless steel    strengthening element Al    NiAl precipitated phase    aging treat-ment    mechanical property
收稿日期: 2017-08-03      出版日期: 2019-06-17
中图分类号:  TG142.1  
通讯作者: 金建军(1963-),男,硕士,研究员,从事高强度结构钢和不锈钢材料的研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:jianjun.jin@biam.ac.cn     E-mail: jianjun.jin@biam.ac.cn
引用本文:   
王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
WANG Fei-yun, JIN Jian-jun, JIANG Zhi-hua, WANG Xiao-zhen, HU Chun-wen. Effect of heat treatment temperature on microstructure and properties of new maraging stainless steel. Journal of Materials Engineering, 2019, 47(6): 152-160.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000993      或      http://jme.biam.ac.cn/CN/Y2019/V47/I6/152
[1] GBSION L J,ASBBY M F.Cellular solids structure and properties[M].Cambridge,UK:Cambridge University Press,1997:205.
[2] 李志,贺自强,金建军,等.航空超高强度钢的发展[M].北京:国防工业出版社,2012:1-5. LI Z,HE Z Q,JIN J J,et al.Development of aeronautical ultra-high strength steel[M].Beijing:National Defense Industry Press,2012:1-5.
[3] SADOSKI E P.Development of a maraging stainless steel[J].Metals Engineering Quarterly,1972,2(12):47-55.
[4] 孙永庆,杨志勇,梁剑雄,等.中国商用飞机高强度不锈钢的现状及发展趋势[J].钢铁研究学报,2009,21(6):1-5. SUN Y Q,YANG Z Y,LIANG J X,et al.Progress and prospect of high strength stainless steel for civil airplanes in China[J].Journal of Iron and Steel Research,2009,21(6):1-5.
[5] DAYMOND B T,BINOT N,SCHMIDT M L,et al.Development of Custom 465 corrosion-resisting steel for landing gear applica-tions[J].Journal of Materials Engineering and Performance,2016,25(4):1539-1553.
[6] 马超,罗海文.GCR15轴承钢热处理过程中碳化物的析出与演变行为[J].材料工程,2017,45(6):97-103. MA C,LUO H W.Precipitation and evolution behavior of carbide during heat treatments of GCr15 bearing steel[J].Journal of Materials Engineering,2017,45(6):97-103.
[7] 霍登平,梁志凯.热处理对9Cr13Mo3Co3Nb2V组织与硬度的影响[J].航空材料学报,2016,36(6):35-39. HUO D P,LIANG Z K.Effect of heat treatment on microstructure and hardness of 9Cr13Mo3Co3Nb2V steel[J].Journal of Aeronautical Materials,2016,36(6):35-39.
[8] 陈嘉砚,杨卓越,宋维顺,等.时效温度对Custom 465钢力学性能的影响[J].钢铁研究学报,2008,20(12):31-34. CHEN J Y,YANG Z Y,SONG W S,et al.Effects of aging temperature on mechanical properties of Custom 465[J].Journal of Iron and Steel Reasearch,2008,20(12):31-34.
[9] 陈嘉砚,刘江,杨卓越,等.马氏体时效不锈钢时效析出相及位向关系的研究[J].钢铁,2008,43(3):81-85. CHEN J Y,LIU J,YANG Z Y,et al.Research on precipitates and relationship with martensite of maraging stainless steel[J].Iron and Steel,2008,43(3):81-85.
[10] IFERGANE S, PINKAS M, BARKAY Z,et al.The relation between aging temperature,microstructure evolution and hardening of Custom 465 stainless steel[J].Materials Charac-terization,2017,127:129-136.
[11] 张良,雍岐龙,梁剑雄,等.PH13-8Mo高强不锈钢在不同温度时效后的析出相及其对力学性能的影响[J].机械工程材料,2017,41(3):19-23. ZHANG L,YONG Q L,LIANG J X,et al.Precipitated phases and effects of they on mechanical properties of PH13-8Mo high strength stainless steel after aging at different temperatures[J].Materials for Mechanical Engineering,2017,41(3):19-23.
[12] JIANG S H,WANG H,WU Y,et al.Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation[J].Nature,2017,544(7651):460-464.
[13] 李春志.电子衍射谱分析中的一种有效方法[J].物理学报,1979,28(3):314-323. LI C Z.A useful method for indexing electron diffraction patterns[J].Acta Physica Sinica,1979,28(3):314-323.
[14] 李春志.分析基体与第二相取向关系的电子计算机程序[J].金属学报,1983,19(5):B178-B184. LI C Z.A computer program for analysis of orientation relation-ship between matrix and second phase[J].Acta Metallurgica Sinica,1983,19(5):B178-B184.
[15] 赵振业,李春志,李志,等.探索强韧化机理,创新超高强度高韧性不锈钢[J].中国有色金属学报,2004,14(专辑1):202-206. ZHAO Z Y,LI C Z,LI Z,et al.Strengthen-toughening mechan-isms and development of new type ultra-high strength stainless steel[J].The Chinese Journal of Nonferrous Metals,2004,14(Special 1):202-206.
[16] 程志伟.PH13-8Mo沉淀硬化不锈钢微观组织研究[D].南昌:南昌航空大学,2012. CHENG Z W.Study on microstructure of PH13-8Mo preci-pitation hardening stainless steel[D].Nanchang:Nanchang Hangkong University,2012.
[17] 余强.高强度不锈钢中纳米析出相演变规律及其对腐蚀的影响[D].北京:北京科技大学,2017. YU Q.Evolution mechanism of nanophase and its influence on corrosion of high strength stainless steel[D].Beijing:University of Science and Technology Beijing,2017.
[18] 刘天琦,支敏学,朱杰远,等.热处理制度对0Cr13Ni8Mo2Al钢组织和性能的影响[J].材料工程,2002(5):26-29. LIU T Q,ZHI M X,ZHU J Y,et al.Effect of heat treatment on microstructure and mechanical properties of 0Cr13Ni8Mo2Al steel[J].Journal of Materials Engineering,2002(5):26-29.
[1] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[2] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[3] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[4] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[5] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[6] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[7] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[8] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[9] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[10] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[11] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[12] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[13] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[14] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[15] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn