Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 68-75    DOI: 10.11868/j.issn.1001-4381.2017.001010
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于镀银纱线的电加热织物温度场模拟与电热性能
李雅芳, 刘皓, 赵义侠
天津工业大学 纺织学院, 天津 300387
Electric heating fabrics based on silver yarns and simulation of temperature field
LI Ya-fang, LIU Hao, ZHAO Yi-xia
College of Textile, Tianjin Polytechnic University, Tianjin 300387, China
全文: PDF(9119 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 运用ANSYS有限元模拟软件对镀银纱线在织物中加热过程进行数值模拟,并通过调整镀银纱线之间的距离和施加电压分析不同条件下加热织物内部和周围空气中热场分布情况。根据模拟结果制备镀银纱线加热织物,验证模拟结果并研究电加热织物电热性能。结果表明,随着电压的增加,镀银纱线平衡温度升高,当输出电压为7V时,镀银纱线在织物中实测温度可达109.7℃。设定镀银纱线间距为3mm,使镀银纱线在较低成本下获得较高的表面温度均匀性。加热织物的升温速度和平衡温度随着功率密度的增加而增加,模拟结果与实测结果趋势一致且结果偏差小于4.5%,说明有限元分析结果能够作为镀银纱线加热织物制备的重要参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅芳
刘皓
赵义侠
关键词 有限元模拟镀银纱线柔性加热织物电热性能红外温度图像    
Abstract:ANSYS finite element simulation software was used to simulate the heating process of silver coated yarns in fabric. The thermal filed distribution of heating fabric in different condition was analyzed by adjusting the distance between the silver coated yarns and output voltage. The heating fabric was prepared by the results of finite element simulation. The electrical heating property of heating fabric was researched and contrast with the results of finite element simulation. The result shows that, the equilibrium temperature of silver coated yarns rise with the increase of output voltage. The temperature is 109.7℃ by the output voltage is 7V. The distance of silver coated yarn in fabric is 3mm, which makes the surface temperature of heating uniform while the cost of silver coated yarns is lower. The equilibrium temperature and the heating speed rise with the increase of power density. The results of simulation are consistent with the actual results and the deviation is less than 4.5%. The results of finite element simulation can be important reference to guide the fabrication of heating fabric based on silver coated yarns.
Key wordsfinite element simulation    silver coated yarn    flexible heating fabric    electric heating property    temperature infrared image
收稿日期: 2017-08-08      出版日期: 2019-02-21
中图分类号:  TS101.8  
通讯作者: 刘皓(1978-),男,副教授,博士,研究方向为智能纺织品,联系地址:天津市西青区宾水西道399号天津工业大学纺织学院楼E317(300387),E-mail:liuhao_0760@163.com     E-mail: liuhao_0760@163.com
引用本文:   
李雅芳, 刘皓, 赵义侠. 基于镀银纱线的电加热织物温度场模拟与电热性能[J]. 材料工程, 2019, 47(2): 68-75.
LI Ya-fang, LIU Hao, ZHAO Yi-xia. Electric heating fabrics based on silver yarns and simulation of temperature field. Journal of Materials Engineering, 2019, 47(2): 68-75.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001010      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/68
[1] WANG F, GAO C, KUKLANE K, et al. A review of technology of personal heating garments[J]. International Journal of Occupational Safety & Ergonomics Jose, 2010, 16(3):387-404.
[2] CHUGH R, CHUNG D D L. Flexible graphite as a heating element[J]. Carbon, 2002, 40(13):2285-2289.
[3] KAYACAN O, BULGUN E, SAHIN O. Implementation of steel-based fabric panels in a heated garment design[J]. Textile Research Journal, 2009, 79(16):1427-1437.
[4] DING J T F, TAO X, AU W M, et al. Temperature effect on the conductivity of knitted fabrics embedded with conducting yarns[J]. Textile Research Journal, 2014, 84(17):1849-1857.
[5] AN J E, JEONG Y G. Structure and electric heating performance of graphene/epoxy composite films[J]. European Polymer Journal, 2013, 49(6):1322-1330.
[6] CHU K, PARK S H. Fabrication of a hybrid carbon-based composite for flexible heating element with a zero temperature coefficient of resistance[J]. IEEE Electron Device Letters, 2014, 36(1):50-52.
[7] BHAT N V, SESHADRI D T, NATE M M, et al. Development of conductive cotton fabrics for heating devices[J]. Journal of Applied Polymer Science, 2006, 102(5):4690-4695.
[8] LEE J Y, DONG W P, LIM J O. Polypyrrole-coated woven fabric as a flexible surface-heating element[J]. Macromolecular Research, 2003, 11(6):481-487.
[9] LI L, AU W M, DING F, et al. Wearable electronic design:electrothermal properties of conductive knitted fabrics[J]. Textile Research Journal, 2014, 84(5):477-487.
[10] CHEN H C, LEE K C, LIN J H, et al. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation[J]. Journal of Materials Processing Tech, 2009, 184(1):124-130.
[11] CHENG K B, CHENG T W, LEE K C, et al. Effects of yarn constitutions and fabric specifications on electrical properties of hybrid woven fabrics[J]. Composites Part A Applied Science & Manufacturing, 2003, 34(10):971-978.
[12] 张洪艳,王海泉,陈国华. 新型导电填料——纳米石墨微片[J]. 塑料, 2006, 35(4):42-45. ZHANG H Y, WANG H Q, CHEN G H. A new kind of conducting filler-graphite nanosheets[J]. Plastics, 2006, 35(4):42-45.
[13] 杨景发,郭建立,李倩,等.板式电热膜加热元件的制备及应用[J]. 红外技术, 2011, 33(11):678-681. YANG J F, GUO J L, LI Q, et al. Preparation and applications of plate electrothermal films[J]. Infrared Technology, 2011, 33(11):678-681.
[14] BALTUŠNIKAITE J,VARNAITE-?URAVLIOVA S, RUBE?IENE V, et al. Influence of silver coated yarn distribution on electrical and shielding properties of flax woven fabrics[J]. Fibres & Textiles in Eastern Europe, 2014, 22(2):84-90.
[15] 施立佳,张红霞. 嵌织镀银纤维涤纶织物的抗静电性能研究[J]. 浙江理工大学学报, 2009, 26(6):846-849. SHI L J, ZHANG H X. Study on antistatic property of the embedded silver-plated fibers polyester fabric[J]. Journal of Zhejiang Sci-Tech University, 2009, 26(6):846-849.
[16] POLLINI M, RUSSO M, LICCIULLI A, et al. Characterization of antibacterial silver coated yarns[J]. Journal of Materials Science Materials in Medicine, 2009, 20(11):2361-2366.
[17] 陈莉,刘皓,周丽. 镀银长丝针织物的结构及其导电发热性能[J]. 纺织学报, 2013, 34(10):52-56. CHEN L, LIU H, ZHOU L. Analysis on silverplated filament knitted fabric knitting and electric heating performance[J]. Journal of Textile Research, 2013, 34(10):52-56
[18] 陈莉,刘皓. 可加热纬编针织物的电热性能[J]. 纺织学报, 2015, 36(4):50-54. CHEN L, LIU H. Electric heating performance of heatable weft knitted fabric[J]. Journal of Textile Research, 2015, 36(4):50-54.
[19] HACHEM E, KLOCZKO T, DIGONNET H, et al. Stabilized finite element solution to handle complex heat and fluid flows in industrial furnaces using the immersed volume method[J]. International Journal for Numerical Methods in Fluids, 2015, 68(1):99-121.
[20] 孙颖迪,陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6):1-7. SUN Y D, CHEN Q R. Numerical simulation and experiment study on extrusion of AZ31 magnesium alloy tube[J]. Journal of Materials Engineering, 2017, 45(6):1-7.
[21] 曹海建,陈红霞,黄晓梅. 三维管状编织复合材料的弯曲性能研究[J]. 产业用纺织品, 2016, 34(11):10-13. CAO H J, CHEN H X, HUANG X M. Study on flexural properties of three-dimensional tube[J]. Technical Textiles, 2016, 34(11):10-13.
[1] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[2] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[3] 董抒华, 李伟东, 丁妍羽, 贾玉玺, 刘刚, 魏春城. 基于“离位”增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9): 52-58.
[4] 聂恒昌, 徐吉峰, 关志东, 黎增山, 王鑫. 复合材料胶接修理层合板拉伸性能及影响参数[J]. 材料工程, 2017, 45(10): 124-131.
[5] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[6] 王东宁, 李嘉禄, 焦亚男. 平纹织物三维细观几何模型和织物防弹实验的有限元模拟[J]. 材料工程, 2013, 0(9): 69-74,78.
[7] 任国成, 赵国群. AZ31镁合金等通道转角挤压应变累积均匀性分析及组织性能研究[J]. 材料工程, 2013, 0(10): 13-19.
[8] 樊梦婷, 孙明月, 李殿中. 大型压力机模座热处理过程模拟及工艺优化[J]. 材料工程, 2011, 0(11): 44-50.
[9] 余琨, 蔡志勇, 王晓艳, 史褆, 黎文献. 半连续铸造AZ31B镁合金连续热轧变形行为的数值模拟[J]. 材料工程, 2010, 0(9): 33-39.
[10] 徐尊平, 程南璞, 陈志谦. 7050铝合金等通道转角挤压的有限元模拟及力学性能[J]. 材料工程, 2008, 0(8): 1-4.
[11] 雷力明, 黄旭, 段锐, 曹春晓. 模具外角对高纯铝60°内角等通道转角挤压变形影响的有限元模拟[J]. 材料工程, 2008, 0(8): 57-60.
[12] 方晓强, 李淼泉, 林莺莺. Ti-6Al-4V钛合金等通道转角挤压的有限元模拟[J]. 材料工程, 2007, 0(5): 57-60,65.
[13] 朱亮, 任国松, 龙林, 车洪艳. 双孔微剪切测定铝合金焊接接头的局部本构特性[J]. 材料工程, 2007, 0(10): 18-22.
[14] 覃继宁, 金泉, 张荻, 张国定, 李在哲. 摩擦力在ECAP成形时作用的有限元模拟[J]. 材料工程, 2006, 0(2): 20-22,60.
[15] 董建新, 张麦仓, 曾燕屏, 谢锡善. 高温合金CT试样裂纹前沿应力分布及第二相影响的模拟计算[J]. 材料工程, 2003, 0(10): 26-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn