Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (10): 55-59    DOI: 10.11868/j.issn.1001-4381.2017.001011
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化
张亮亮1, 王希靖1,2,*(), 刘骁1
1 兰州理工大学 省部共建有色金属先进加工与 再利用国家重点实验室, 兰州 730050
2 兰州理工大学 材料科学与工程学院, 兰州 730050
Crystal Orientation Evolution During Friction Stir Welding of 6082 Aluminum Alloys
Liang-liang ZHANG1, Xi-jing WANG1,2,*(), Xiao LIU1
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
全文: PDF(3915 KB)   HTML ( 37 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用电子背散射衍射(EBSD)技术,研究6082-T6铝合金搅拌摩擦焊焊核区及母材上表面晶粒形貌、晶界特征、织构组分的演化。结果表明:在焊接过程中,母材发生塑性变形以及动态回复再结晶,晶粒被细化;基于搅拌针后方所形成的汤普森四面体,邻近匙孔焊核区首先形成(110)[001]高斯织构和(114)[22${\rm{\bar 1}}$]织构,且这两种织构晶粒沿〈110〉晶向旋转一定角度,进一步形成(112)[11${\rm{\bar 1}}$]铜织构、(11${\rm{\bar 1}}$)[112]织构;距匙孔40mm处焊核区,经历了轴肩的挤压,塑性变形程度更大,使得[110]丝织构占主导地位。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亮亮
王希靖
刘骁
关键词 6082-T6铝合金搅拌摩擦焊晶粒取向演化电子背散射衍射    
Abstract

The evolution of grain morphology, grain boundary characterization, misorientation distribution and texture in upper part of base metal and nugget zone during friction stir welding of 6082-T6 aluminum alloys was investigated by the electron backscattered diffraction (EBSD) technique. The results show that the grains of the base metal are refined due to the experienced plastic deformation and dynamic recrystallization; based on the Thompson tetrahedrons that are formed behind the pin, the (110)[001] Goss texture and (114)[22${\rm{\bar 1}}$] texture are formed firstly in nugget zone adjacent to keyhole. Those grains rotate along 〈110〉 crystallographic direction due to the stress introduced by the shoulder, leading subsequently to the formation of the (112)[11${\rm{\bar 1}}$] copper texture and (11${\rm{\bar 1}}$)[112] texture; the nugget zone located at a distance of 40mm from the keyhole experiences shoulder extrusion, thus, the plastic deformation degree becomes bigger and the [110] fiber texture consequently dominates in this region.

Key words6082-T6 aluminum alloy    friction stir welding    crystal orientation evolution    EBSD
收稿日期: 2017-08-10      出版日期: 2018-10-17
中图分类号:  TG453  
基金资助:国家科技重大专项资助项目(2012ZX04008011)
通讯作者: 王希靖     E-mail: wangxj@lut.cn
作者简介: 王希靖(1956-), 男, 教授, 研究方向:焊接设备及其自动化, 搅拌摩擦焊技术及焊接质量控制, 联系地址:甘肃省兰州市七里河区兰工坪287号兰州理工大学材料科学与工程学院(730050), E-mail:wangxj@lut.cn
引用本文:   
张亮亮, 王希靖, 刘骁. 6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化[J]. 材料工程, 2018, 46(10): 55-59.
Liang-liang ZHANG, Xi-jing WANG, Xiao LIU. Crystal Orientation Evolution During Friction Stir Welding of 6082 Aluminum Alloys. Journal of Materials Engineering, 2018, 46(10): 55-59.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001011      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/55
Si Mg Cu Ti Fe Cr Zn Al
0.97 0.67 0.07 0.01 0.37 0.01 0.06 Bal
Table 1  6082铝合金的化学成分(质量分数/%)
Fig.1  焊接过程中焊接方向和轴肩旋转方向以及EBSD试样取样位置示意图
Fig.2  EBSD晶粒形貌及晶界分型图
(a)母材;(b)区域1;(c)区域2
Fig.3  晶粒间的取向差分布
Color code (h k l)
[u v w]
Volume fraction in region 1/% Volume fraction in region 2/%
(110)[001] 16.4 6.94
[110]//TD 24.0 32.00
(112)[11${\rm{\bar 1}}$] 16.3 26.50
(114)[22${\rm{\bar 1}}$] 19.4 14.40
(11${\rm{\bar 1}}$)[112] 10.0 0.00
Table 2  焊缝上表面不同区域织构及含量
Fig.4  不同织构的晶粒分布(a)区域1;(b)区域2
Fig.5  焊接过程中形成的汤普森四面体示意图
1 刘炜. 6082合金船用铝型材的生产工艺研究[J]. 铝加工, 2001, 24 (3): 19- 22.
doi: 10.3969/j.issn.1005-4898.2001.03.006
1 LIU W . Study on the production process of 6082 aluminium alloy profiles for ship[J]. Aluminium Fabrication, 2001, 24 (3): 19- 22.
doi: 10.3969/j.issn.1005-4898.2001.03.006
2 SU J Q , NELSON T W , MISHRA R , et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51 (3): 713- 729.
doi: 10.1016/S1359-6454(02)00449-4
3 ERIDXXON M , SANDSTROM R . Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25 (12): 1379- 1387.
doi: 10.1016/S0142-1123(03)00059-8
4 王文, 李天麒, 乔柯, 等. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
4 WANG W , LI T Q , QIAO K , et al. Effect of rotation rate on microstructure and properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
5 郝亚鑫, 王文, 徐瑞琦, 等. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44 (6): 70- 75.
5 HAO Y X , WANG W , XU R Q , et al. Effect of post weld heat treatment on microstructure and mechanical properties of submerged friction stir welded 7A04 aluminum alloy[J]. Journal of Materials Engineering, 2016, 44 (6): 70- 75.
6 袁鸽成, 李仲华, 朱振华, 等. 5083铝合金搅拌摩擦焊缝应力腐蚀行为[J]. 材料研究与应用, 2010, 4 (4): 509- 513.
doi: 10.3969/j.issn.1673-9981.2010.04.063
6 YUAN G C , LI Z H , ZHU Z H , et al. The friction stir welds performance of stress corrosion cracking for 5083 aluminum alloy plate[J]. Materials Research and Application, 2010, 4 (4): 509- 513.
doi: 10.3969/j.issn.1673-9981.2010.04.063
7 袁鸽成, 梁春朗, 刘洪, 等. 搅拌摩擦焊焊接5083铝合金板材焊核区的晶体取向[J]. 焊接学报, 2014, 35 (8): 79- 82.
7 YUAN G C , LIANG C L , LIU H , et al. Crystal orientation in nugget zone of friction stir welded 5083 aluminum alloy plates[J]. Transactions of the China Welding Institution, 2014, 35 (8): 79- 82.
8 肖继生, 李建萍, 柯黎明, 等. 搅拌摩擦焊基础塑性流动形态的研究[J]. 热加工工艺, 2011, 40 (13): 1- 3.
doi: 10.3969/j.issn.1001-3814.2011.13.001
8 XIAO J S , LI J P , KE L M , et al. Study on basic flow behavior in friction stir welding[J]. Hot Working Technology, 2011, 40 (13): 1- 3.
doi: 10.3969/j.issn.1001-3814.2011.13.001
9 秦红珊, 杨新岐. 铝合金搅拌摩擦焊缝和母材疲劳裂纹扩展行为[J]. 航空材料学报, 2017, 37 (5): 41- 47.
9 QIN H S , YANG X Q . Performances of fatigue crack growth for aluminum friction stir welds and base materials[J]. Journal of Aeronautical Materials, 2017, 37 (5): 41- 47.
10 XU N , UEJI R , FUJII H . Dynamic and static change of grain size and texture of copper during friction stir welding[J]. Journal of Materials Processing Technology, 2016, 232, 90- 99.
doi: 10.1016/j.jmatprotec.2016.01.021
11 SUHUDDIN U F H R , MIRONOV S , SATO Y S , et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Materialia, 2009, 57 (18): 5406- 5418.
doi: 10.1016/j.actamat.2009.07.041
12 PRANGNELL P B , HEASON C P . Grain structure formation during friction stir welding observed by the 'stop action technique'[J]. Acta Materialia, 2005, 53 (11): 3179- 3192.
doi: 10.1016/j.actamat.2005.03.044
13 JEONA J , MIRONOV S , SATO Y S , et al. Anisotropy of structural response of single crystal austenitic stainless steel to friction stir welding[J]. Acta Materialia, 2013, 61 (9): 3465- 3472.
doi: 10.1016/j.actamat.2013.02.039
14 SABOONI S , KARIMZADEH F , ENAYATI M H , et al. Recrystallisation mechanism during friction stir welding of ultrafine and coarse-grained AISI 304L stainless steel[J]. Science and Technology of Welding and Joining, 2016, 21 (4): 287- 294.
doi: 10.1080/13621718.2015.1104097
15 HUANG Y X , WANG Y B , MENG X C , et al. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys[J]. Journal of Materials Processing Technology, 2017, 249, 331- 338.
doi: 10.1016/j.jmatprotec.2017.06.021
16 GRATECAP F , GIRARD M , MARYA S , et al. Exploring material flow in friction stir welding:tool eccentricity and formation of banded structures[J]. International Journal of Material Forming, 2012, 5 (2): 99- 107.
doi: 10.1007/s12289-010-1008-5
17 栾国红, 郭德伦, 张田仓, 等. 铝合金的搅拌摩擦焊[J]. 焊接技术, 2003, 32 (1): 1- 4.
doi: 10.3969/j.issn.1002-025X.2003.01.001
17 LUAN G H , GUO D L , ZHANG T C , et al. Friction stir welding of aluminium alloy[J]. Welding Technology, 2003, 32 (1): 1- 4.
doi: 10.3969/j.issn.1002-025X.2003.01.001
18 张信钰. 金属和合金的织构[M]. 北京: 科学出版社, 1976.
18 ZHANG X Y . Texture of metal and alloy[M]. Beijing: Science Press, 1976.
19 STAO Y S , KOKAWA H , IKEDA K , et al. Microtexture in the friction-stir weld of an aluminum alloy[J]. Metallurgical and Materials Transactions A, 2001, 32 (4): 941- 948.
doi: 10.1007/s11661-001-0351-z
20 胡庚祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2000.
20 HU G X , CAI X , RONG Y H . Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.
[1] 金士杰, 田鑫, 林莉. 铝合金搅拌摩擦焊超声检测研究进展[J]. 材料工程, 2022, 50(8): 45-59.
[2] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[3] 王涛, 武传松. 超声对铝/镁异质合金搅拌摩擦焊接成形的影响[J]. 材料工程, 2022, 50(5): 20-34.
[4] 金启豪, 陈娟, 彭立明, 李子言, 阎熙, 李春曦, 侯城成, 袁铭扬. 碳纤维增强树脂基复合材料与铝/镁合金连接研究进展[J]. 材料工程, 2022, 50(1): 15-24.
[5] 吴程浩, 刘涛, 高嵩, 石磊, 刘洪涛. 铝/钢异种金属的超声振动强化搅拌摩擦焊接工艺[J]. 材料工程, 2022, 50(1): 33-42.
[6] 石磊, 戴翔, 武传松, 傅莉. 2195铝锂合金超声振动辅助搅拌摩擦焊接工艺研究[J]. 材料工程, 2021, 49(5): 122-129.
[7] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[8] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[9] 李文亚, 曹聪聪, 杨夏炜, 徐雅欣. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11): 53-63.
[10] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[11] 乔及森, 向阳芷, 聂书才, 张涵. 铝镁异种金属复合挤压成形及界面微观组织[J]. 材料工程, 2017, 45(11): 78-83.
[12] 王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
[13] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[14] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
[15] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn