1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
The evolution of grain morphology, grain boundary characterization, misorientation distribution and texture in upper part of base metal and nugget zone during friction stir welding of 6082-T6 aluminum alloys was investigated by the electron backscattered diffraction (EBSD) technique. The results show that the grains of the base metal are refined due to the experienced plastic deformation and dynamic recrystallization; based on the Thompson tetrahedrons that are formed behind the pin, the (110)[001] Goss texture and (114)[22${\rm{\bar 1}}$] texture are formed firstly in nugget zone adjacent to keyhole. Those grains rotate along 〈110〉 crystallographic direction due to the stress introduced by the shoulder, leading subsequently to the formation of the (112)[11${\rm{\bar 1}}$] copper texture and (11${\rm{\bar 1}}$)[112] texture; the nugget zone located at a distance of 40mm from the keyhole experiences shoulder extrusion, thus, the plastic deformation degree becomes bigger and the [110] fiber texture consequently dominates in this region.
LIU W . Study on the production process of 6082 aluminium alloy profiles for ship[J]. Aluminium Fabrication, 2001, 24 (3): 19- 22.
doi: 10.3969/j.issn.1005-4898.2001.03.006
2
SU J Q , NELSON T W , MISHRA R , et al. Microstructural investigation of friction stir welded 7050-T651 aluminium[J]. Acta Materialia, 2003, 51 (3): 713- 729.
doi: 10.1016/S1359-6454(02)00449-4
3
ERIDXXON M , SANDSTROM R . Influence of welding speed on the fatigue of friction stir welds and comparison with MIG and TIG[J]. International Journal of Fatigue, 2003, 25 (12): 1379- 1387.
doi: 10.1016/S0142-1123(03)00059-8
WANG W , LI T Q , QIAO K , et al. Effect of rotation rate on microstructure and properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45 (10): 32- 38.
doi: 10.11868/j.issn.1001-4381.2015.001234
HAO Y X , WANG W , XU R Q , et al. Effect of post weld heat treatment on microstructure and mechanical properties of submerged friction stir welded 7A04 aluminum alloy[J]. Journal of Materials Engineering, 2016, 44 (6): 70- 75.
YUAN G C , LI Z H , ZHU Z H , et al. The friction stir welds performance of stress corrosion cracking for 5083 aluminum alloy plate[J]. Materials Research and Application, 2010, 4 (4): 509- 513.
doi: 10.3969/j.issn.1673-9981.2010.04.063
YUAN G C , LIANG C L , LIU H , et al. Crystal orientation in nugget zone of friction stir welded 5083 aluminum alloy plates[J]. Transactions of the China Welding Institution, 2014, 35 (8): 79- 82.
XIAO J S , LI J P , KE L M , et al. Study on basic flow behavior in friction stir welding[J]. Hot Working Technology, 2011, 40 (13): 1- 3.
doi: 10.3969/j.issn.1001-3814.2011.13.001
QIN H S , YANG X Q . Performances of fatigue crack growth for aluminum friction stir welds and base materials[J]. Journal of Aeronautical Materials, 2017, 37 (5): 41- 47.
10
XU N , UEJI R , FUJII H . Dynamic and static change of grain size and texture of copper during friction stir welding[J]. Journal of Materials Processing Technology, 2016, 232, 90- 99.
doi: 10.1016/j.jmatprotec.2016.01.021
11
SUHUDDIN U F H R , MIRONOV S , SATO Y S , et al. Grain structure evolution during friction-stir welding of AZ31 magnesium alloy[J]. Acta Materialia, 2009, 57 (18): 5406- 5418.
doi: 10.1016/j.actamat.2009.07.041
12
PRANGNELL P B , HEASON C P . Grain structure formation during friction stir welding observed by the 'stop action technique'[J]. Acta Materialia, 2005, 53 (11): 3179- 3192.
doi: 10.1016/j.actamat.2005.03.044
13
JEONA J , MIRONOV S , SATO Y S , et al. Anisotropy of structural response of single crystal austenitic stainless steel to friction stir welding[J]. Acta Materialia, 2013, 61 (9): 3465- 3472.
doi: 10.1016/j.actamat.2013.02.039
14
SABOONI S , KARIMZADEH F , ENAYATI M H , et al. Recrystallisation mechanism during friction stir welding of ultrafine and coarse-grained AISI 304L stainless steel[J]. Science and Technology of Welding and Joining, 2016, 21 (4): 287- 294.
doi: 10.1080/13621718.2015.1104097
15
HUANG Y X , WANG Y B , MENG X C , et al. Dynamic recrystallization and mechanical properties of friction stir processed Mg-Zn-Y-Zr alloys[J]. Journal of Materials Processing Technology, 2017, 249, 331- 338.
doi: 10.1016/j.jmatprotec.2017.06.021
16
GRATECAP F , GIRARD M , MARYA S , et al. Exploring material flow in friction stir welding:tool eccentricity and formation of banded structures[J]. International Journal of Material Forming, 2012, 5 (2): 99- 107.
doi: 10.1007/s12289-010-1008-5
LUAN G H , GUO D L , ZHANG T C , et al. Friction stir welding of aluminium alloy[J]. Welding Technology, 2003, 32 (1): 1- 4.
doi: 10.3969/j.issn.1002-025X.2003.01.001
18
张信钰. 金属和合金的织构[M]. 北京: 科学出版社, 1976.
18
ZHANG X Y . Texture of metal and alloy[M]. Beijing: Science Press, 1976.
19
STAO Y S , KOKAWA H , IKEDA K , et al. Microtexture in the friction-stir weld of an aluminum alloy[J]. Metallurgical and Materials Transactions A, 2001, 32 (4): 941- 948.
doi: 10.1007/s11661-001-0351-z
20
胡庚祥, 蔡珣, 戎咏华. 材料科学基础[M]. 上海: 上海交通大学出版社, 2000.
20
HU G X , CAI X , RONG Y H . Fundamentals of materials science[M]. Shanghai: Shanghai Jiao Tong University Press, 2000.