Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 51-56    DOI: 10.11868/j.issn.1001-4381.2017.001013
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
激光诱导法制备高质量铌酸钾纳米线及其发光性能
李瑞1, 刘立英2, 姬宇航1, 王如志1, 杨炎翰1, 胡安明3, 白石3
1. 北京工业大学 材料科学与工程学院, 北京 100124;
2. 北京工业大学 应用数理学院, 北京 100124;
3. 北京工业大学 激光工程研究院, 北京 100124
Preparation of High Quality Potassium Niobate Nanowires by Laser Induced Method and Its Luminescence Properties
LI Rui1, LIU Li-ying2, JI Yu-hang1, WANG Ru-zhi1, YANG Yan-han1, HU An-ming3, BAI Shi3
1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2. College of Applied Science, Beijing University of Technology, Beijing 100124, China;
3. Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
全文: PDF(1809 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以KOH,Nb2O5为原料,通过激光诱导法成功地在常温常压条件下制备出直径均匀、结晶性良好的铌酸钾纳米线。产物经XRD,SEM,Raman和UV-Vis等技术进行表征,并研究铌酸钾纳米线的光吸收和光致发光性能。结果表明:激光诱导产物化学式为KNb3O8(空间群为Pmmm(47),为正交晶系),纳米线的生长机制为SLS机制。纳米线的带隙宽度为2.84eV,在436nm处有一较强的蓝色发光峰。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李瑞
刘立英
姬宇航
王如志
杨炎翰
胡安明
白石
关键词 激光诱导铌酸钾纳米线生长机制带隙宽度光致发光    
Abstract:Under normal temperature and pressure conditions, potassium niobate nanowires with uniform diameter and good crystallinity were prepared by laser-induced method using KOH and Nb2O5 as raw materials. The samples were characterized by XRD, SEM, Raman and UV-Vis, the light absorption and photoluminescence properties of potassium niobate nanowires were studied. The results show that the chemical formula of laser-induced samples is KNb3O8 (the space group is Pmmm (47), which is orthorhombic system). The growth mechanism of nanowires is the SLS mechanism. The band gap of the prepared nanowires is 2.84eV, there is a strong blue emission peak at 436nm.
Key wordslaser induced    potassium niobate nanowire    growth mechanism    band gap    photoluminescence
收稿日期: 2017-08-10      出版日期: 2018-11-19
中图分类号:  O649  
基金资助: 
通讯作者: 刘立英(1979-),女,高级实验师,博士,主要从事新型低维光电功能材料的结构设计、制备表征、性能分析及其物理机理探索的研究,联系地址:北京市朝阳区平乐园100号北京工业大学(100124),E-mail:liuliying@bjut.edu.cn     E-mail: liuliying@bjut.edu.cn
引用本文:   
李瑞, 刘立英, 姬宇航, 王如志, 杨炎翰, 胡安明, 白石. 激光诱导法制备高质量铌酸钾纳米线及其发光性能[J]. 材料工程, 2018, 46(11): 51-56.
LI Rui, LIU Li-ying, JI Yu-hang, WANG Ru-zhi, YANG Yan-han, HU An-ming, BAI Shi. Preparation of High Quality Potassium Niobate Nanowires by Laser Induced Method and Its Luminescence Properties. Journal of Materials Engineering, 2018, 46(11): 51-56.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001013      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/51
[1] GASPERIN P M. Structure du triniobate(V) de potassium KNb3O8, un niobate lamellaire[J]. Acta Cryst, 1982, 38(7):2024-2026.
[2] 刘阳龙,郑玉婴,曹宁宁,等. 水热法合成铁掺杂的硫化镉及光催化性能[J]. 材料工程,2017,45(10):12-17. LIU Y L, ZHENG Y Y, CAO Y Y, et al. Synthesis and photocatalytic activity of iron doped CdS by hydrothermal method[J]. Journal of Materials Engineering, 2017, 45(10):12-17.
[3] 王艳春,曾效舒,敖志强,等. 热还原石墨烯的制备及其对重金属Pb2+的吸附性[J]. 材料工程,2017,45(10):6-11. WANG Y C, ZENG X S, AO Z Q, et al. Preparation of graphene via thermal reduction and its adsorption capacity for heavy metal Pb2+[J]. Journal of Materials Engineering, 2017, 45(10):6-11.
[4] ZHANG T, LEI W, LIU P, et al. Insights into the structure-photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires[J]. Chem Sci, 2015, 6(7):4118-4123.
[5] WAROQUET A, DEMANGE V, HAKMEH N, et al. Epitaxial growth and cationic exchange properties of layered KNb3O8 thin films[J]. RSC Adv, 2017, 7(25):15482-15491.
[6] ZHAN J, LIU D, DU W, et al. Synthesis and characterization of high crystallinity, well-defined morphology stoichiometric lithium niobate nanocrystalline[J]. Journal of Crystal Growth, 2011, 318(1):1121-1124.
[7] SHVALAGIN V V, GRODZYUK G Y, ANDRYUSHINA N S, et al. Photocatalytic activity of layered KNb3O8 and K3H3Nb10.8O30 in gas-phase decomposition of methanol[J]. Theoretical and Experimental Chemistry, 2017, 52(6):337-341.
[8] MATOS J, LANFREDI S, MONTANA R, et al. Photochemical reactivity of apical oxygen in KSr2Nb5O15materials for environmental remediation under UV irradiation[J]. J Colloid Interface Sci, 2017, 496(14):211-221.
[9] SUZUKI S, TESHIMA K, YAMAGUCHI A, et al. Fabrication and photocatalytic performance of highly crystalline nanosheets derived from flux-grown KNb3O8 crystals[J]. Cryst Eng Comm, 2012, 14(3):987-992.
[10] LIANG B, ZHANG N, CHEN C, et al. Hierarchical yolk-shell layered potassium niobate for tuned pH-dependent photocatalytic H2 evolution[J]. Catal Sci Technol, 2017, 7(4):1000-1005.
[11] KUDO A. Effect of ion exchange on photoluminescence of layered niobates K4Nb6O17 and KNb3O8[J]. J Phys Chem, 1996, 28(6):17323-17326.
[12] ZHANG G, HE F, ZOU X, et al. Hydrothermal synthesis and photocatalytic property of KNb3O8 with nanometer leaf-like network[J]. Journal of Alloys and Compounds, 2007, 427(1):82-86.
[13] GEORGIEV R, GEORGIEVA B, VASILEVA M, et al. Optical properties of sol-gel Nb2O5 films with tunable porosity for sensing applications[J]. Advances in Condensed Matter Physics, 2015, 2015(3):244-247.
[14] YU B, CAO B, CAO H, et al. Synthesis and nonlinear optical properties of single-crystalline KNb3O8 nanowires[J]. Nanotechnology, 2013, 24(8):085704.
[15] ZHAN Z Y, XU C Y, ZHEN L, et al. Large-scale synthesis of single-crystalline KNb3O8 nanobelts via a simple molten salt method[J]. Ceramics International, 2010, 36(2):679-682.
[16] YEO J, HONG S, KIM G, et al. Laser-Induced hydrothermal growth of heterogeneous metal-oxide nanowire on flexible substrate by laser absorption layer design[J]. American Chemical Society, 2015, 9(6):6059-6068.
[17] ZHANG G, NAKAMURA A, AOKI T, et al. Au-assisted growth approach for vertically aligned ZnO nanowires on Si substrate[J]. Applied Physics Letters, 2006, 89(11):113112.
[18] NAM W, MITCHELL J I, YE P D, et al. Laser direct synthesis of silicon nanowire field effect transistors[J]. Nanotechnology, 2015, 26(5):055306.
[19] LIN L, LIU L, PENG P, et al. In situ nanojoining of Y-and T-shaped silver nanowires structures using femtosecond laser radiation[J]. Nanotechnology, 2016, 27(12):125201.
[20] IN J B, KWON H J, LEE D, et al. In situ monitoring of laser-assisted hydrothermal growth of ZnO nanowires:thermally deactivating growth kinetics[J]. Small, 2014, 10(4):741-749.
[21] HWANG D J, RYU S G, GRIGOROPOULOS C P. Multi-parametric growth of silicon nanowires in a single platform by laser-induced localized heat sources[J]. Nanotechnology, 2011, 22(38):385303.
[22] HAN L L, XIN H L, KULINICH S A, et al. Hierarchical, ultrathin single-crystal nanowires of CdS conveniently produced in laser-induced thermal field[J]. Langmuir, 2015, 31(29):8162-8167.
[23] PAENG D, LEE D, YEO J, et al. Laser-induced reductive sintering of nickel oxide nanoparticles under ambient conditions[J]. The Journal of Physical Chemistry C, 2015, 119(11):6363-6372.
[24] SUN Y, ZHANG Z, LIU L, et al. FTIR, Raman and NMR investigation of CaO-SiO2-P2O5 and CaO-SiO2-TiO2-P2O5 glasses[J]. Journal of Non-Crystalline Solids, 2015, 420(15):26-33.
[25] SUN Y, ZHANG Z. Structural roles of boron and silicon in the CaO-SiO2-B2O3 glasses using FTIR, Raman, and NMR spectroscopy[J]. Metallurgical and Materials Transactions B, 2015, 46(4):1549-1554.
[26] TRENTLER T J. Solution-liquid-solid growth of crystalline Ⅲ-V semiconductors:an analogy to vapor-liquid-solid growth[J]. Science, 1995, 270(5243):1791-1794.
[27] ZHANG T, LEI W, LIU P, et al. Insights into the structure-photoreactivity relationships in well-defined perovskite ferroelectric KNbO3 nanowires[J]. Chem Sci, 2015, 6(7):4118-4123.
[28] SAITO K, KUDO A. Niobium-complex-based syntheses of sodium niobate nanowires possessing superior photocatalytic properties[J]. Inorg Chem, 2010, 49(5):2017-2019.
[1] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[2] 刘宝, 吴佑实, 张长桥. ZnO纳米棒Al掺杂和Al,N共掺杂的制备技术与光致发光性能[J]. 材料工程, 2011, 0(3): 65-69.
[3] 武光明, 王怡, 靳力, 韩彬, 邢光建, 江伟. 用甩胶喷雾热分解方法制备羧酸铕配合物光致发光薄膜的研究[J]. 材料工程, 2008, 0(10): 46-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn