Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 18-24    DOI: 10.11868/j.issn.1001-4381.2017.001023
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究
陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙
中国航发北京航空材料研究院 石墨烯及应用研究中心, 北京 100095
Synthesis and capacitive performance of globular MnO2 flowers anchored graphene composites
CHEN Xiang, YAN Shao-jiu, NAN Wen-zheng, WANG Nan, PENG Si-kan, WANG Chen, DAI Sheng-long
Research Center of Graphene Applications, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(5308 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用高锰酸钾与乙醇之间的氧化还原反应,在多孔石墨烯表面沉积纳米二氧化锰花球,获得了一种新型的复合电极材料。通过XRD,TG,SEM,TEM等分析手段确定了材料的晶体结构、化学成分、微观形貌特征。电化学性能测试表明:纳米二氧化锰花球具有优异的比电容,但是倍率性能和循环性能不足。通过在石墨烯表面负载纳米二氧化锰花球,能够显著增加石墨烯的比电容,同时改善纳米二氧化锰花球的倍率性能和循环性能。采用0.5mol/L K2SO4电解液,进行三电极循环伏安测试,复合电极材料在2mV·s-1扫速下的比电容高达295F·g-1,在1000mV·s-1扫速下,比电容仍然可达102F·g-1,同时100mV·s-1,1000次循环后,电容循环保持率可达96.3%。这表明石墨烯负载花球状二氧化锰材料是一种极具潜力的超级电容器电极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈翔
燕绍九
南文争
王楠
彭思侃
王晨
戴圣龙
关键词 二氧化锰纳米花球超级电容器储能电极材料    
Abstract:A new type globular MnO2 flowers anchored graphene composites was synthesized via redox reactions among potassium permanganate/ethanol/graphene. The crystalline structure, chemical component, and microstructure of the composites were determined by XRD, TG, SEM/TEM and BET analysis. The electrochemical test demonstrates the globular MnO2 material possesses excellent specific capacitance while poor rate capability and cycling stability. By means of anchoring these globular MnO2 flowers onto graphene, the specific capacitance of graphene is significantly improved. Meanwhile, rate capability and cycling stability of the globular MnO2 material can be promoted remarkably. In 0.5mol/L K2SO4 electrolyte, the specific capacitance of the composites reaches as high as 295F·g-1 at 2mV·s-1, and maintains at 102F·g-1 even at a high scan rate of 1000mV·s-1.An outstanding capacitance retention of 96.3% is achieved for the composites after 1000 cycles at 100mV·s-1. It demonstrates the globular MnO2 flowers anchored graphene composites is a very potential electrode material for supercapacitors.
Key wordsglobular MnO2 flower    composites    supercapacitor    energy storage electrode materials
收稿日期: 2017-07-17      出版日期: 2019-01-16
中图分类号:  O613.71  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事磁性材料、石墨烯增强金属、储能材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
陈翔, 燕绍九, 南文争, 王楠, 彭思侃, 王晨, 戴圣龙. 石墨烯负载花球状二氧化锰复合材料制备及其电容性能研究[J]. 材料工程, 2019, 47(1): 18-24.
CHEN Xiang, YAN Shao-jiu, NAN Wen-zheng, WANG Nan, PENG Si-kan, WANG Chen, DAI Sheng-long. Synthesis and capacitive performance of globular MnO2 flowers anchored graphene composites. Journal of Materials Engineering, 2019, 47(1): 18-24.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001023      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/18
[1] WANG J G, KANG F, WEI B. Engineering of MnO2-based nanocomposites for high-performance supercapacitors[J]. Progress in Materials Science, 2015, 74:51-124.
[2] CHEN X, YAN S, WANG N, et al. Facile synthesis and characterization of ultrathin δ-MnO2 nanoflakes[J]. RSC Advances, 2017, 7(88):55734-55740.
[3] POSR J E. Crystal structure determinations of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method[J]. American Mineralogist, 1990, 75(5/6):477-489.
[4] DEVARAJ S, MUNICHANDRAIAH N. Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties[J]. Journal of Physical Chemistry C, 2008, 112(11):4406-4417.
[5] BROUSSE T, TOUPIN M, DUGAS R, et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2006, 153(12):A2171-A2180.
[6] TURNER S, BUSECK P R. Todorokites:a new family of naturally occurring manganese oxides[J]. Science, 1981, 212(4498):1024-1027.
[7] RAGUPATHY P, PARK D H, CAMPET G, et al. Remarkable capacity retention of nanostructured manganese oxide upon cycling as an electrode material for supercapacitor[J]. Journal of Physical Chemistry C, 2009, 113(15):6303-6309.
[8] XU M W,KONG L B,ZHOU W J,et al.Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins[J].Journal of Physical Chemistry C,2007,111(51):19141-19147.
[9] SUBRAMANIAN V, ZHU H, WEI B. Nanostructured MnO2:hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material[J]. Journal of Power Sources, 2006, 159(1):361-364.
[10] YU P, ZHANG X, CHEN Y, et al. Preparation and pseudo-capacitance of birnessite-type MnO2, nanostructures via microwave-assisted emulsion method[J]. Materials Chemistry & Physics, 2009, 118(2/3):303-307.
[11] CAO J, LI X, WANG Y, et al. Materials and fabrication of electrode scaffolds for deposition of MnO2 and their true performance in supercapacitors[J]. Journal of Power Sources 2015, 293:657-674.
[12] REN Y, XU Q, ZHANG J, et al. Functionalization of biomass carbonaceous aerogels:selective preparation of MnO2@CA composites for supercapacitors[J]. ACS Applied Materials & Interfaces, 2014, 6(12):9689.
[13] HE Y, CHEN W, LI X, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1):174.
[14] LI L, HU Z A, AN N, et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability[J]. Journal of Physical Chemistry C, 2014, 118(40):22865-22872.
[15] SONG Y, FENG D Y, LIU T Y, et al. Controlled partial-exfoliation of graphite foil and integration with MnO2 nanosheets for electrochemical capacitors[J]. Nanoscale, 2015, 7(8):3581.
[16] MA S B, AHN K Y, LEE E S, et al. Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes[J]. Carbon, 2007, 45(2):375-382.
[17] SINGH V, JOUNG D, LEI Z, et al. Graphene based materials:past, present and future[J]. Progress in Materials Science, 2011, 56(8):1178-1271.
[18] MENDOZA-SÁNCHEZ B, COELHO J, POKLE A, et al. A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications[J]. Electrochimica Acta, 2015, 174:696-705.
[19] MALARD L M, PIMENTA M A, DRESSELHAUS G, et al. Raman spectroscopy in graphene[J]. Physics Reports, 2009, 473(5/6):51-87.
[20] JORIO A. Raman spectroscopy in graphene-based systems:prototypes for nanoscience and nanometrology[J]. Isrn Nanotechnology, 2012, 2012(2):1-16.
[21] FERRARI A C, MEYER J C, SCARDACI V, et al. The Raman fingerprint of graphene[J]. Physical Review Letters, 2006, 97(18):41-47.
[22] KANG L, ZHANG M, LIU Z H, et al. IR spectra of manganese oxides with either layered or tunnel structures.[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2007, 67(3/4):864.
[23] QI F. Synthesis of Cs-birnessite and transformation reaction to (2×4) tunnel structure by heat-treatment[J]. Journal of Materials Science Letters, 2003, 22(14):999-1001.
[24] TERAYAMA K, IKEDA M. Study on thermal decomposition of MnO2 and Mn2O3 by thermal analysis[J]. Materials Transactions Jim, 2007, 24(11):754-758.
[25] BELLO A, BARZEGAR F, MOMODU D, et al. Symmetric supercapacitors based on porous 3D interconnected carbon framework[J]. Electrochimica Acta, 2015, 151:386-392.
[1] 郑俊生, 秦楠, 郭鑫, 金黎明, Zheng Jim P. 高比能超级电容器:电极材料、电解质和能量密度限制原理[J]. 材料工程, 2020, 48(9): 47-58.
[2] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[3] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[4] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[5] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[6] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[7] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[8] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[9] 陈翔, 燕绍九, 王楠, 彭思侃, 王晨, 吴广明, 戴圣龙. δ-MnO2纳米片的制备、表征及电化学性能[J]. 材料工程, 2019, 47(2): 49-55.
[10] 寻之玉, 侯璞, 刘旸, 倪守朋, 霍鹏飞. 聚合物电解质在超级电容器中的研究进展[J]. 材料工程, 2019, 47(11): 71-83.
[11] 李诗杰, 韩奎华. 基于“蛋盒”结构海藻基超级活性炭的制备及电化学性能[J]. 材料工程, 2019, 47(10): 97-104.
[12] 田玉, 丁滔滔, 朱小龙, 郑广, 詹志明. NaV6O15纳米杆的制备及其电化学性能[J]. 材料工程, 2019, 47(10): 105-112.
[13] 李诗杰, 张继刚, 李金晓, 韩奎华, 韩旭东, 路春美. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7): 157-164.
[14] 陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
[15] 王楠, 燕绍九, 彭思侃, 陈翔, 戴圣龙. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J]. 材料工程, 2017, 45(12): 112-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn