Please wait a minute...
材料工程  2018, Vol. 46 Issue (3): 13-21    DOI: 10.11868/j.issn.1001-4381.2017.001029
  锂离子电池专栏 本期目录 | 过刊浏览 | 高级检索 |
王一博, 赵九蓬
哈尔滨工业大学 化工与化学学院, 哈尔滨 150001
3D Printing of Flexible Electrodes Towards Wearable Lithium Ion Battery
WANG Yi-bo, ZHAO Jiu-peng
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
全文: PDF(5896 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
摘要 利用挤出式3D打印技术制备纺织物结构的自支撑柔性锂离子电池电极的新方法,并采用高浓度的聚偏氟乙烯(PVDF)作为黏度调节剂、碳纳米管(CNT)作为导电剂、磷酸铁锂或钛酸锂作为电极活性材料,配制了具有可打印性的"墨水",其表观黏度接近105Pa·s,该"墨水"表现出明显的剪切变稀行为,同时存储模量平台值也高达105Pa,其优异的流变学性质对于打印和固化过程十分有利。电化学测试结果表明,两种打印电极具有稳定且十分匹配的充放电比容量,因此由二者组装的软包袋装全电池也具有高达~108mAh·g-1的放电比容量(50mA·g-1),弯曲后,在同样的电流密度下其放电比容量约为111mAh·g-1
E-mail Alert
关键词 柔性/可穿戴电子学打印电极3D打印技术锂离子电池    
Abstract:A novel method to fabricate flexible free-standing electrodes with textile structure for lithium-ion batteries was provided by applying extrusion-based three-dimensional (3D) printing technology. Meanwhile, highly concentrated poly(vinylidene fluoride) (PVDF) is used as viscosity modifier, carbon nanotube (CNT) as conducting additive, and lithium iron phosphate (LFP) or lithium titanium oxide (LTO) as cathode or anode active materials respectively to develop printable inks with obvious shear-thinning behavior, and with the apparent viscosity and storage modulus platform value of over 105Pa·s, which is beneficial to the printability and enable complex 3D structures solidification. The electrochemical test shows that both printed electrodes have similar charge and discharge specific capacities under current density of 50mA·g-1. To explore the feasibility of the printed electrodes, a pouch cell with as-printed LFP and LTO electrode as cathode and anode respectively is assembled. The pouch cell without deformation delivers discharge specific capacities of approximately 108mAh·g-1, and there is a tiny increase in discharge specific capacities of around 111mAh·g-1 for bended pouch cell.
Key wordsflexible/wearable electronics    printed electrode    3D printing technology    lithium-ion battery
收稿日期: 2017-08-15      出版日期: 2018-03-20
中图分类号:  TQ152  
通讯作者: 赵九蓬(1973-),女,教授,博士生导师,研究方向:纳米微球,联系地址:哈尔滨市南岗区西大直街92号哈尔滨工业大学化工楼1101(150001),     E-mail:
王一博, 赵九蓬. 3D打印柔性可穿戴锂离子电池[J]. 材料工程, 2018, 46(3): 13-21.
WANG Yi-bo, ZHAO Jiu-peng. 3D Printing of Flexible Electrodes Towards Wearable Lithium Ion Battery. Journal of Materials Engineering, 2018, 46(3): 13-21.
链接本文:      或
[1] ZHONG J, ZHANG Y, ZHONG Q, et al. Fiber-based generator for wearable electronics and mobile medication[J]. ACS Nano, 2014, 8(6):6273-6280.
[2] JEONG G S, BAEK D H, JUNG H C,et al. Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer[J]. Nature Communications, 2012, 3(1):1-8.
[3] SUMBOJA A, FOO C Y, WANG X, et al.Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device[J]. Advanced Materials, 2013, 25(20):2809-2815.
[4] MARTIROSYAN N, KALANI M Y S. Epidermal electronics[J]. World Neurosurgery, 2011, 76(6):485-486.
[5] NODA M, KOBAYASHI N, MAO K, et al. An OTFT-driven rollable OLED display[J].J Soc Inf Display, 2012, 19(4):316-322.
[6] ETACHERI V, MAROM R, RAN E, et al. Challenges in the development of advanced Li-ion batteries:a review[J]. Energy & Environmental Science, 2011, 4(9):3243-3262.
[7] WANG Z L, XU D, XU J J, et al.Oxygen electrocatalysts in metal-air batteries:from aqueous to nonaqueous electrolytes[J]. Chemical Society Reviews, 2014, 3(22):7746-7786.
[8] HU L B, PASTA M, MANTIA F L, et al. Stretchable, porous, and conductive energy textiles[J]. Nano Lett, 2010, 10(2):708-714.
[9] SUN K, WEI T S, AHN B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv Mater, 2013, 25(33):4539-4543.
[10] ZHU C, HAN T Y, DUOSS E B, et al. Highly compressible 3D periodic graphene aerogel microlattices[J]. Nat Commun, 2011, 6:1-8.
[11] TUMBLESTON J R, SHIRVANYANT S D, ERMOSHKIN N, et al. Additive manufacturing continuous liquid interface production of 3D objects[J]. Science, 2015, 347(6228):1349-1352.
[12] OBER T J, FORESTI D, LEWIS J A, et al. Active mixing of complex fluids at the microscale[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40):12293-12298.
[13] SUN K, WEI T S, AHN B Y, et al. 3D printing of interdigitated Li-ion microbattery architectures[J]. Adv Mater, 2013,25:4539-4543.
[14] MILROY C A, JANG S, FUJIMORI T, et al. Inkjet-printed lithiumesulfur microcathodes for all-printed, integrated nanomanufacturing[J]. Small, 2017,
[15] FU K, WANG Y B, YAN C Y, et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries[J]. Adv Mater,2016, 28(13):2587-2594.
[16] LEWIS J A, Direct ink writing of 3D functional materials[J]. Adv Funct Mater,2006, 16(17):2193-2204.
[17] RAO R B, KRAFCIK K L, MORALES A M, et al. Microfabricated deposition nozzles for direct-write assembly of three-dimensional periodic structures[J]. Adv Mater,2005, 17(3):289-293.
[18] KIM S H, CHOI K H, CHO S J, et al. Printable solid-state lithium-ion batteries:a new route toward shape-conformable power sources with aesthetic versatility for flexible electronics[J].Nano Lett, 2015, 15(8):5168-5177.
[19] LEWIS J A, AHN B Y. Device fabrication:three-dimensional printed electronics[J]. Nature, 2015, 518(7537):42-43.
[20] ZHAO Q, ZHANG Y, MENG Y, et al. Phytic acid derived LiFePO4 beyond theoretical capacity as high-energy density cathode for lithium ion battery[J]. Nano Energy, 2017, 34:408-420.
[21] XU G, LI F, TAO Z, et al.Monodispersed LiFePO4@C core-shell nanostructures for a high power Li-ion battery cathode[J]. J Power Sources, 2014, 246(3):696-702.
[22] 杨威,曹传堂,曹传宝,等. 共沉淀法制备锂离子电池正极材料LiFePO4及其性能研究[J]. 材料工程,2005(6):36-40. YANG W, CAO C T, CAO C B, et al. Synthesis of LiFePO4 by liquid-state co-precipitation method and its performance[J]. Journal of Materials Engineering, 2005(6):36-40.
[23] ZHANG Q, LU H, ZHONG H, et al. W6+ & Br- codoped Li4Ti5O12 anode with super rate performance for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(26):13706-13716.
[24] WU Z S, REN W, XU L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5(7):5463-5471.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[3] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[4] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[5] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[6] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[7] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[8] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[9] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[10] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[11] 常增花, 王建涛, 李文进, 武兆辉, 卢世刚. 锂离子电池硅基负极界面反应的研究进展[J]. 材料工程, 2019, 47(2): 11-25.
[12] 齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47(12): 10-20.
[13] 袁颂东, 杨灿星, 江国栋, 熊剑, 艾青, 黄仁忠. 锂离子电池高镍三元材料的研究进展[J]. 材料工程, 2019, 47(10): 1-9.
[14] 李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
[15] 杨朝, 杨金萍, 王静, 姚少巍, 刘刚. 空心球Fe3O4&海绵状碳复合材料制备及其电化学性能表征[J]. 材料工程, 2018, 46(6): 43-50.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持