Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 32-41    DOI: 10.11868/j.issn.1001-4381.2017.001046
  综述 本期目录 | 过刊浏览 | 高级检索 |
基于纤维素纳米晶体的刺激响应功能材料的研究进展
丁春香, 潘明珠
南京林业大学 材料科学与工程学院, 南京 210037
Research progress in stimuli-responsive functional materials based on cellulose nanocrystals
DING Chun-xiang, PAN Ming-zhu
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
全文: PDF(8238 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 纤维素纳米晶体(cellulose nanocrystal,CNC)具备高强度、高模量、结构可控、易于表面修饰、生物相容性、生物可降解性,在刺激响应功能材料的设计组装过程中扮演着越来越重要的角色。作为一类具有"智能"行为的大分子体系,刺激响应功能材料在受到外部环境的刺激时,能够做出灵敏响应,体现出设定的相应功能,CNC的引入不仅能够调控其力学性能,表面存在的羟基、羧基也为丰富材料的刺激响应源提供了便捷途径。本文从CNC的化学结构切入,介绍了CNC的特性及其构建的刺激响应功能材料的合成思路,并以刺激"开关"为主线,重点介绍了基于CNC的水、pH、热、光单一或多重刺激响应功能材料的研究进展,最后指出,提高纤维素纳米晶体表面修饰改性效率,拓宽多重刺激响应性,实现高性能的基于纤维素纳米晶体的多重刺激响应功能材料的制备是未来该领域的研究重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁春香
潘明珠
关键词 纤维素纳米晶体刺激响应功能材料复合材料    
Abstract:Cellulose nanocrystal (CNC) plays a more and more important role in the process of designing and assembly of functional materials, due to its high strength and modulus, controllable structure, feasible modification, biocompatibility and biodegradability. As a kind of macromolecule system with "intelligent" behavior, the stimuli-responsively functional materials make a sensitive response when stimulated by the external environment, and show the corresponding function. With the addition of CNCs, not only the mechanical properties of CNC-based functional materials are greatly improved, but also the hydroxyl and carboxyl groups on the surface of CNCs provide a convenient way to enrich the stimulus response source of these functional materials. Herein, combining with the chemical structure of CNC, the synthesis of CNC-based stimuli-responsive functional materials was comprehensively summarized. Meanwhile, the recent developments of single or multiple stimuli-responsive functional materials based on CNCs, such as water-, thermal-, pH-, light-responsive functional materials were summarized, with the stimulate switch taken as the main line. Finally, it was pointed out that future research would focus on improving the surface-modification efficiency of CNC, and broadening multi-stimulus responsiveness of CNC-based functional materials. The preparation of CNC-based functional materials with high performances will be significant in the future research as well.
Key wordscellulose nanocrystal    stimuli    responsiveness    functional material    composites
收稿日期: 2017-08-10      出版日期: 2019-01-16
中图分类号:  TQ35  
通讯作者: 潘明珠(1980-),女,教授,博士,研究方向:生物质复合材料,联系地址:江苏省南京市玄武区龙蟠路159号南京林业大学材料科学与工程学院(210037),E-mail:mzpan@njfu.edu.cn     E-mail: mzpan@njfu.edu.cn
引用本文:   
丁春香, 潘明珠. 基于纤维素纳米晶体的刺激响应功能材料的研究进展[J]. 材料工程, 2019, 47(1): 32-41.
DING Chun-xiang, PAN Ming-zhu. Research progress in stimuli-responsive functional materials based on cellulose nanocrystals. Journal of Materials Engineering, 2019, 47(1): 32-41.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001046      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/32
[1] LANG F, BUSCH G L, RITTER M, et al. Functional significance of cell volume regulatory mechanisms[J]. Physiological Reviews, 1998, 78(1):247-306.
[2] IBRIC S, PAROJCIC J, MRHAR A. From smart materials to advanced drug delivery systems[J]. International Journal of Pharmaceutics, 2017, 533(2):323.
[3] COUKOUMA, A E, ASHER S A. Increased volume responsiveness of macroporous hydrogels[J]. Sensors and Actuators B-Chemical, 2018, 255:2900-2903.
[4] MA X, TIAN H. Stimuli-responsive supramolecular polymers in aqueous solution[J]. Accounts of Chemical Research, 2014, 47(7):1971-1981.
[5] 赵稼祥. 先进复合材料的发展与展望[J]. 材料工程, 2000(10):40-44, 48. ZHAO J X. Development and prospect of advanced composite materials[J]. Journal of Materials Engineering, 2000(10):40-44, 48.
[6] LU Y, SUN W J, GU Z. Stimuli-responsive nanomaterials for therapeutic protein delivery[J]. Journal of Controlled Release, 2014, 194:1-19.
[7] ISLAM R M, GAO Y F, LI X, et al. Stimuli-responsive polymeric materials for human health application[J]. Chinese Science Bulletin, 2014, 59(32):4237-4255.
[8] EICHHORN S J, DUFRESNE A, ARANGUREN M, et al. Review:current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45(1):1-33.
[9] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose nanocrystals:chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6):3479-3500.
[10] NISHIYAMA Y. Structure and properties of the cellulose microfibril[J]. Journal of Wood Science, 2009, 55(4):241-249.
[11] 潘明珠,连海兰. 生物质纳米材料的制备及其功能应用[M]. 北京:科学出版社, 2016:130-136. PAN M Z, LIAN H L. Function and application of nano-materials based on biomass[M]. Beijing:Science Press, 2016:130-136.
[12] ŠTURCOVÁ A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules, 2005, 6(2):1055-1061.
[13] MAHMOUD K A, MENA J A, MALE K B, et al. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2010, 2(10):2924-2932.
[14] DONG S, CHO H J, LEE Y W, et al. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting[J]. Biomacromolecules, 2014, 15(5):1560-1567.
[15] SAMUEL J, STRINKOVSKI A, SHALOM S, et al. Miniaturization of organically doped sol-gel materials:a microns-size fluorescent pH sensor[J]. Materials Letters, 1994, 21(5/6):431-434.
[16] ROY S G, HALDAR U, DE P. Remarkable swelling capability of amino acid based cross-linked polymer networks in organic and aqueous medium[J]. ACS Applied Materials & Interfaces, 2014, 6(6):4233-4241.
[17] PATIL N, SONI J, GHOSH N, et al. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy) ethyl methacrylate):deswelling kinetics probed by quantitative mueller matrix polarimetry[J]. Journal of Physical Chemistry B, 2012, 116(47):13913-13921.
[18] SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications[J]. Science, 2012, 336(6085):1124-1128.
[19] STUART M A C, HUCK W T S, GENZER J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials, 2010, 9(2):101-113.
[20] HUBBE M A, ROJAS O J, LUCIA L A, et al. Cellulosic nanocomposites:a review[J]. BioResources, 2008, 3(3):929-980.
[21] SIRÍ I, PLACKETT D. Microfibrillated cellulose and new nanocomposite materials:a review[J]. Cellulose, 2010, 17(3):459-494.
[22] 黄进,林宁,彼得·张荣贵,等. 生物基聚多糖纳米晶-化学及应用[M]. 北京:化学工业出版社, 2014:209-219. HUANG J, LIN N, CHANG P R,et al. Bio-based polysaccharide nanocrystals-chemistry and application[M]. Beijing:Chemical Industry Press, 2014:209-219.
[23] SIQUEIRA G, BRAS J, DUFRESNE A. Cellulose whiskers versus microfibrils:influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites[J]. Biomacromolecules, 2009, 10(2):425-432.
[24] BECK-CANDANEDO S, ROMAN M, GRAY D. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions[J]. Biomacromolecules, 2005, 6(2):1048-1054.
[25] AKIRA I, TSUGUYUKI S, HAYAKA F. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2011, 3(1):71-81.
[26] 戴磊,龙柱,张丹. TEMPO氧化纤维素纳米纤维的制备及应用研究进展[J]. 材料工程, 2015, 43(8):84-91. DAI L, LONG Z, ZHANG D. Research progress in preparation and application of TEMPO-oxidized cellulose nanofibers[J]. Journal of Materials Engineering, 2015, 43(8):84-91.
[27] 徐雁. 功能性无机-晶态纳米纤维素复合材料的研究进展与展望[J]. 化学进展, 2011, 23(11):2183-2199. XU Y. Functional inorganic-cellulose hybrid nanocomposites[J]. Progress in Chemistry, 2011, 23(11):2183-2199.
[28] LIN N, DUFRESNE A. Nanocellulose in biomedicine:current status and future prospect[J]. European Polymer Journal, 2014, 59:302-325.
[29] GIESE M, BLUSCH L K, KHAN M K, et al. Functional materials from cellulose-derived liquid-crystal templates[J]. Angewandte Chemie Internation Edition, 2015, 54(10):2888-2910.
[30] WU X D, LU C H, HAN Y Y, et al. Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application[J]. Composites Science and Technology, 2016, 124:44-51.
[31] LU P, HSIEH Y L. Preparation and properties of cellulose nanocrystals:rods, spheres, and network[J]. Carbohydrate Polymers, 2010, 82(2):329-336.
[32] ROMAN M, WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5:1671-1677.
[33] WINTER H T, CERCLIER C, DELORME N, et al. Improved colloidal stability of bacterial cellulose nanocrystal suspensions for the elaboration of spin-coated cellulose-based model surfaces[J]. Biomacromolecules, 2010, 11:3144-3151.
[34] HESS A E, CAPADONA J R, SHANMUGANATHAN K, et al. Development of a stimuli-responsive polymer nanocomposite toward biologically optimized, MEMS-based neural probes[J]. Journal of Micromechanics and Microengineering, 2011, 21(5):1-10.
[35] SHANMUGANATHAN K, CAPADONA J R, ROWAN S J, et al. Stimuli-responsive mechanically adaptive polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2010, 2(1):165-174.
[36] MENDEZ J, ANNAMALAI P K, EICHHORN S J, et al. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect[J]. Macromolecules, 2011, 44(17):6827-6835.
[37] 杨倩丽,康晓明,孙静,等. 刺激响应性聚合物的设计、合成及其应用研究新进展[J]. 化工进展, 2015, 34(8):3075-3098. YANG Q L, KANG X M, SUN J, et al. New progress in the design, synthesis and application of stimuli responsive polymers[J]. Chemical Industry and Engineering Progress, 2015, 34(8):3075-3098.
[38] SANNA R, FORTUNATI E, ALZARI V. Poly(N-vinylcaprolactam) nanocomposites containing nanocrystalline cellulose:a green approach to thermoresponsive hydrogels[J]. Cellulose, 2013, 20(5):2393-2402.
[39] NAVARRO-BAENA I, KENNY J M, PEPONI L. Thermally-activated shape memory behaviour of bionanocomposites reinforced with cellulose nanocrystals[J]. Cellulose, 2014, 21(6):4231-4246.
[40] CALVERT P. Hydrogels for soft machines[J]. Advanced Materials, 2009, 21(7):743-756.
[41] YAO C, LIU Z, YANG C, et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators[J]. Advanced Functional Materials,2015, 25(20):2980-2991.
[42] ISLAM M R, LI X, SMYTH K, et al. Polymer-based muscle expansion and contraction[J]. Angewandte Chemie International Edition, 2013, 52(39):10330-10333.
[43] QIU X Y, HU S W. "Smart" materials based on cellulose:a review of the preparations, properties, and applications[J]. Materials, 2013, 6(3):738-781.
[44] GAO X Y, SADASIVUNI K K, KIM H C, et al. Designing pH-responsive and dielectric hydrogels from cellulose nanocrystals[J]. Journal of Chemical Sciences, 2015, 127(6):1119-1125.
[45] SADASIVUNI K K, PONNAMMA D, KUMAR B, et al. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology[J]. Composites Science and Technology, 2014, 104(19):18-25.
[46] SADASIVUNI K K, CASTRO M, SAITER A, et al. Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications[J]. Materials Letters, 2013, 96(1):109-112.
[47] KAFY A, SADASIVUNI K K, KIM H C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J]. Physical Chemistry Chemical Physics, 2015, 17(8):5923-5931.
[48] SADASIVUNI K K, SAITER A, GAUTIER N, et al. Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites[J]. Colloid and Polymer Science, 2013, 291(7):1729-1740.
[49] LI Y, CHEN H M, LIU D, et al. pH-responsive shape memory poly (ethylene glycol)-poly(ε-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite[J]. ACS Applied Materials & Interfaces, 2015, 7(23):12988-12999.
[50] SCHUMERS J M, FUSTIN C A, GOHY J F. Light-responsive block copolymers[J]. Macromolecular Rapid Communications, 2010, 31(18):1588-1607.
[51] SEO J W, CHUNG J W, KWON J E, et al. Photoisomerization-induced gel-to-sol transition and concomitant fluorescence switching in a transparent supramolecular gel of a cyanostilbene derivative[J]. Chemical Science, 2014, 5(12):4845-4850.
[52] FOX J D, CAPADONA J R, MARASCO P D, et al. Bioinspired water-enhanced mechanical gradient nanocomposite films that mimic the architecture and properties of the squid beak[J]. Journal of the American Chemical Society, 2013, 135(13):5167-5174.
[53] BIYANI M V, FOSTER E J, WEDER C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS Macro Letters, 2013, 2(3):236-240.
[54] BIYANI M V, JORFI M, WEDER C, et al. Light-stimulated mechanically switchable, photopatternable cellulose nanocomposites[J]. Polymer Chemistry, 2014, 5(19):5716-5724.
[55] LIU Y, LI Y, YANG G, et al. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals[J]. ACS Applied Materials and Interfaces, 2015, 7(7):4118-4126.
[56] ZHAO L, LI W, PLOG A, et al. Multi-responsive cellulose nanocrystal-rhodamine conjugates:an advanced structure study by solidstate dynamic nuclear polarization (DNP) NMR[J]. Physical Chemistry Chemical Physics, 2014, 16(47):26322-26329.
[57] WANG Y G, HEIM L O, XU Y P, et al. Transparent, stimuli-responsive films from cellulose-based organogel nanoparticles[J]. Advanced Functional Materials, 2015, 25(9):1434-1441.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[3] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[4] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[5] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[6] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[7] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[8] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[9] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[12] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[13] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[14] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[15] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn