Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (2): 107-114    DOI: 10.11868/j.issn.1001-4381.2017.001094
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响
刘英1,2, 张永安1, 王卫2, 李冬生2, 王俊伟2, 梁玉冬2
1. 北京有色金属研究总院 有色金属材料制备加工国家重点实验室, 北京 100088;
2. 中国铝业郑州有色金属研究院有限公司, 郑州 450041
Influence of Fe on film-forming mechanism of (Cu-Ni-Fe)-xNiFe2O4 composite inert anode for aluminum electrolysis in low temperature electrolyte
LIU Ying1,2, ZHANG Yong-an1, WANG Wei2, LI Dong-sheng2, WANG Jun-wei2, LIANG Yu-dong2
1. State Key Laboratory of Nonferrous Metals and Processes, General Research Institute for Nonferrous Metals, Beijing 100088, China;
2. Zhengzhou Non-ferrous Metals Research Institute Co., Ltd. of CHALCO, Zhengzhou 450041, China
全文: PDF(12179 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以高温固相合成的NiFe2O4和Cu,Ni,Fe金属粉为原料,采用冷压烧结法制备不同合金相含量的(Cu-Ni-Fe)-xNiFe2O4x=50,60,70,80,质量分数/%,下同)金属基复合惰性阳极材料,研究合金相中Fe元素对(Cu-Ni-Fe)-xNiFe2O4金属基复合惰性阳极材料烧结和电解过程中基体成分与微观组织的影响,发现合金相中的Ni,Fe及NiFe2O4陶瓷相在烧结和电解过程中发生了可逆的氧化还原反应,使得NiFe2O4相发生解离和再生成。对(Cu-Ni-Fe)-xNiFe2O4金属基复合惰性阳极材料进行了低温电解性能测试,研究其在电解过程中的成膜过程和腐蚀行为。结果表明:(Cu-Ni-Fe)-xNiFe2O4金属基复合惰性阳极材料电解过程中电压稳定,铝液杂质含量低于0.7%(质量分数),有望解决金属陶瓷阳极热稳定性差的问题,是理想的惰性阳极材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘英
张永安
王卫
李冬生
王俊伟
梁玉冬
关键词 NiFe2O4复合材料惰性阳极铝电解    
Abstract:Several (Cu-Ni-Fe)-xNiFe2O4(x=50,60,70,80,mass fraction/%) composite inert anodes with different contents of alloy phase were prepared using Cu, Ni, Fe and high-temperature synthetic NiFe2O4 by cold-pressing sintering method. The effect of Fe on the composition and microstructure of the (Cu-Ni-Fe)-xNiFe2O4 composite inert anodes during sintering and electrolysis process was studied. It is found that the redox reaction between Ni/Fe and NiFe2O4 phase occurs, leading to the dissociation and regeneration of NiFe2O4. In addition, the film-forming process and corrosion behavior of the (Cu-Ni-Fe)-xNiFe2O4 anodes were studied through low-temperature aluminium electrolysis test. The results indicate that the cell voltage is stable during electrolysis and the impurities in the produced aluminium are less than 0.7% (mass fraction), which indicates that (Cu-Ni-Fe)-xNiFe2O4 composite inert anode is one of the most promising inert anode materials, and the poor thermal stability of the ceramic anode is expected to be solved.
Key wordsNiFe2O4    composite material    inert anode    aluminum electrolysis
收稿日期: 2017-08-31      出版日期: 2019-02-21
中图分类号:  TF821  
通讯作者: 张永安(1971-),男,博士,教授级高工,研究方向为航空航天高强韧铝合金,联系地址:北京市新街口外大街2号北京有色金属研究总院有色金属材料制备加工国家重点实验室(100088),E-mail:zhangyongan@grinm.com     E-mail: zhangyongan@grinm.com
引用本文:   
刘英, 张永安, 王卫, 李冬生, 王俊伟, 梁玉冬. Fe对(Cu-Ni-Fe)-xNiFe2O4复合惰性阳极低温铝电解成膜机制的影响[J]. 材料工程, 2019, 47(2): 107-114.
LIU Ying, ZHANG Yong-an, WANG Wei, LI Dong-sheng, WANG Jun-wei, LIANG Yu-dong. Influence of Fe on film-forming mechanism of (Cu-Ni-Fe)-xNiFe2O4 composite inert anode for aluminum electrolysis in low temperature electrolyte. Journal of Materials Engineering, 2019, 47(2): 107-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001094      或      http://jme.biam.ac.cn/CN/Y2019/V47/I2/107
[1] 刘业翔,李颉. 现代铝电解[M]. 北京:冶金工业出版社, 2008:561-564. LIU Y X, LI J. Modern aluminium electrolysis[M]. Beijing:Metallurgical Industry Press, 2008:561-564.
[2] 何汉兵,李志友,周科朝. 金属惰性阳极的研究进展[J]. 材料导报, 2007, 21(12):69-72. HE H B,LI Z Y,ZHOU K C. Research progress in metal inert anodes[J]. Materials Review, 2007, 21(12):69-72.
[3] 周科朝,陶玉强. 铁酸镍基金属陶瓷惰性阳极材料的研究进展[J]. 中国有色金属学报, 2011, 21(10):2418-2429. ZHOU K C,TAO Y Q. Research development of nickel ferrite based cermet inert anode materials[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(10):2418-2429.
[4] MA X X, HE Y D, WANG D R. Inert anode composed of Ni-Cr alloy substrate, intermediate oxide film and α-Al2O3/Au (Au-Pt, Au-Pd, Au-Rh) surface composite coating for aluminium electrolysis[J]. Corrosion Science,2011,53(3):1009-1017.
[5] CHAPMAN V,WELCH B J,SKYLLAS-KAZACOS M. High temperature oxidation behaviour of Ni-Fe-Co anodes for aluminium electrolysis[J]. Corrosion Science, 2011, 53(9):2815-2825.
[6] ASSOULI B,PEDRON M,HELLE S,et al. Mechanically alloyed Cu-Ni-Fe based materials as inert anode for aluminum production[C]//Light Metals 2009. Pittsburgh,PA,US:TMS, 2009:1141-1144.
[7] WELCH B J. Inert anodes-the status of the material science, the opportunities they present and the challenges that need resolving before commercial implementation[C]//Light Metals 2009. Pittsburgh, PA,US:TMS,2009:971-978.
[8] 吴深,樊江磊,刘建秀,等. NiZnFe2O4包覆铁基软磁复合材料的制备及性能[J]. 材料工程, 2017, 45(7):60-65. WU S,FAN J L,LIU J X,et al. Fabrication and properties of iron-based soft magnetic composites coated with NiZnFe2O4[J]. Journal of Materials Engineering,2017,45(7):60-65.
[9] TIAN Z L, LAI Y Q, LI Z Y, et al. Further development on NiFe2O4-based cermet inert anodes for aluminum electrolysis[J]. JOM, 2014, 66(11):2229-2234.
[10] TAO Y Q, LI Z Y, ZHANG D,et al. Microstructural evolution of a nickel ferrite-copper alloy cermet during sintering and high-temperature oxidation[J]. Journal of the American Ceramic Society,2012, 95(10):3031-3036.
[11] HE H B. The metal phase selection of 10NiO-NiFe2O4-based cermet anodes for aluminum electrolysis[C]//Light Metals 2014. Pittsburgh, PA, US:TMS,2014:1321-1325.
[12] LIU J Y,LI Z Y,TAO Y Q,et al. Phase evolution of 17(Cu-10Ni)-(NiFe2O4-10NiO) cermet inert anode during aluminum electrolysis[J]. Transactions of Nonferrous Metals Society of China,2011, 21(3):566-572.
[13] TIAN Z L,LAI Y Q,YANG S,et al. Anodic corrosion behavior of NiFe2O4-based cermet in Na3AlF6-K3AlF6-AlF3 for aluminium electrolysis[J]. Metallurgical and Materials Transactions B,2015, 46(3):1257-1261.
[14] OLSEN E,THONSTAD J. Nickel ferrite as inert anodes in aluminium electrolysis:part Ⅰ:material fabrication and preliminary testing[J]. Journal of Applied Electrochemistry,1999,29(3):293-299.
[15] BAKER H.ASM metals handbook, volume 3:alloy phase diagrams[M]. Ohio,US:ASM International,1992:1644-1647.
[16] OLSEN E, THONSTAD J. Nickel ferrite as inert anodes in aluminium electrolysis:part Ⅱ:material performance and long-term testing[J]. Journal of Applied Electrochemistry,1999,29(3):301-311.
[17] XIAO H,HOVLAND R,ROLSETH S,et al. Studies on the corrosion and the behavior of inert anodes in aluminum electrolysis[J]. Metallurgical and Materials Transactions B,1996,27:185-193.
[18] PENG W P, LIU Y, GUO J, et al. Effect of La on the electrolysis performance of 46Cu-25Ni-19Fe-10Al metal anode[C]//Light Metals 2014. Pittsburgh, PA, US:TMS,2014:1301-1304.
[19] GOUPIL G, HELLE S, DAVIS B, et al. Anodic behavior of mechanically alloyed Cu-Ni-Fe and Cu-Ni-Fe-O electrodes for aluminum electrolysis in low-temperature KF-AlF3 electrolyte[J]. Electrochimica Acta,2013, 112:176-182.
[20] HELLE S, BRODU B, DAVIS B, et al. Influence of the iron content in Cu-Ni based inert anodes on their corrosion resistance for aluminium electrolysis[J]. Corrosion Science,2011, 53(10):3248-3253.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[3] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[4] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[5] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[6] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[7] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[8] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[9] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[10] 戚云超, 方国东, 梁军, 谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1): 27-33.
[11] 张冰清, 杨小波, 孙志强, 苗镇江, 王华栋, 吕毅. 纤维增强石英复合材料的改性处理及性能研究[J]. 材料工程, 2020, 48(1): 48-53.
[12] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[13] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[14] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[15] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn