Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 104-112    DOI: 10.11868/j.issn.1001-4381.2017.001120
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响
王跃明1, 唐求豪1, 闫志巧2, 王芬3
1. 湖南科技大学 难加工材料高效精密加工湖南省重点实验室, 湖南 湘潭 411201;
2. 广东省材料与加工研究所 广东省金属强韧化 技术与应用重点实验室, 广州 510650;
3. 华南理工大学 国家金属材料 近净成形工程技术研究中心, 广州 510640
Influence of Vacuum Chamber Pressure on Microstructure and Properties of Tungsten Target Fabricated by Low Pressure Plasma Spraying
WANG Yue-ming1, TANG Qiu-hao1, YAN Zhi-qiao2, WANG Fen3
1. Key Laboratory of High Efficiency & Precision Machining of Difficult-to-cut Material of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China;
2. Guangdong Provincial Key Laboratory for Technology and Application of Metal Toughening, Guangdong Institute of Materials and Processing, Guangzhou 510650, China;
3. National Engineering Research Center of Near-net-shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
全文: PDF(6429 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用低压等离子喷涂成形技术制备片状及回转体钨靶材,分析真空室压力对钨靶材致密度、氧质量分数、微观结构、显微硬度及抗拉强度等性能的影响,并对片状钨靶材的磁控溅射镀膜进行研究。结果表明:随着真空室压力由1.3×104Pa增大至3.9×104Pa,钨粉充分熔化铺展,未熔W颗粒减少,钨靶材氧含量稍有提高,致密度,显微硬度和抗拉强度分别增大至97.2%,377.8HV0.025及201.1MPa。然而,当真空室压力进一步增大至6.5×104Pa后,钨靶材层片结合界面形成絮状的W3O夹杂层,氧含量增大至0.71%,其各项性能反而有所降低。低压等离子喷涂成形片状钨靶材(3.9×104Pa真空室压力)可磁控溅射沉积出平整、致密、连续的钨薄膜,镀膜厚度约为300nm。XRD结果表明,钨薄膜为体心立方结构,沿(110)方向择优生长。磁控溅射离子的均匀轰击导致钨靶材表面快速溅射及均匀减薄,溅射表面及截面较为平整、光滑,溅射凹坑接近纳米级。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王跃明
唐求豪
闫志巧
王芬
关键词 低压等离子喷涂钨靶材显微组织力学性能磁控溅射    
Abstract:Planar and rotary tungsten targets were fabricated by low pressure plasma spraying (LPPS). The effects of chamber pressure on the relative density, oxygen content by mass, microstructure, micro-hardness and ultimate tensile strength(UTS) of tungsten targets were analyzed. In addition, the magnetron sputtering experiment of LPPS tungsten target was studied. As chamber pressure increased from 1.3×104Pa to 3.9×104Pa, tungsten powders were full melted and spread with decreased unmelted particles existing in the target, the oxygen content in the tungsten target slightly improved. At the same time, relative density, micro-hardness, and UTS of LPPS tungsten target increased up to maximum values as 97.2%, 377.8HV0.025 and 201.1MPa, respectively. However, oxygen content of tungsten targets increased significantly up to 0.71% with floc like W3O layer(about 200nm thickness) being formed at lamellar bonding interface as chamber pressure further increasing up to 6.5×104Pa. Instead, relative density, micro-hardness and UTS of tungsten target decrease for detrimental effect of oxygen content. Smooth, dense and continuous tungsten thin film with the thickness of about 300nm can be deposited by magnetron sputtering from LPPS tungsten target under chamber pressure of 3.9×104Pa. XRD spectra show that the tungsten thin film in body centered cubic structure grows preferentially along (110) direction. The uniform bombardment of sputter ion results in rapid sputtering and uniform reduction on the surface of tungsten targets during magnetron sputtering. The sputtering surface and cross section are even and smooth with the nano-scale sputtering spits being formed.
Key wordslow pressure plasma spray    tungsten target    microstructure    mechanical property    magnetron sputtering
收稿日期: 2017-09-05      出版日期: 2018-10-17
中图分类号:  TG146.4+12  
通讯作者: 王跃明(1979-),男,讲师,博士,从事热喷涂技术及粉末冶金新材料方面的研究工作,联系地址:湖南省湘潭市桃园路1号湖南科技大学材料科学与工程学院(411201),E-mail:wym_@163.com     E-mail: wym_@163.com
引用本文:   
王跃明, 唐求豪, 闫志巧, 王芬. 真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J]. 材料工程, 2018, 46(10): 104-112.
WANG Yue-ming, TANG Qiu-hao, YAN Zhi-qiao, WANG Fen. Influence of Vacuum Chamber Pressure on Microstructure and Properties of Tungsten Target Fabricated by Low Pressure Plasma Spraying. Journal of Materials Engineering, 2018, 46(10): 104-112.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001120      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/104
[1] 高波,邵利峰,张惠丰.金属钨溅射靶材制备及性能研究[J].世界有色金属,2017,33(5):249-250. GAO B,SHAO L F,ZHANG H F.Preparation and properties of metal tungsten sputtering target[J].World Nonferrous Metals,2017,33(5):249-250.
[2] LIPSKI A R,LEFFERTS R S.Making tungsten targets using tungsten oxide powder[J].Nuclear Instruments and Methods in Physics Research A,2011,655(1):41-43.
[3] 储志强.国内外磁控溅射靶材的现状及发展趋势[J].金属材料与冶金工程,2011,39(4):44-49. CHU Z Q.The present status and development trend of magnetron sputtering target at home and abroad[J].Metal Materials and Metallurgy Engineering,2011,39(4):44-49.
[4] 杨邦朝,崔红玲.溅射靶材的制备与应用[J].真空,2001,38(3):11-15. YANG B C,CUI H L.Manufacture and application of sputtering target materials[J].Vacuum,2001,38(3):11-15.
[5] 白锋.高纯钨合金靶材制备工艺的研究[D].厦门:厦门大学,2015. BAI F.The study of preparing of high purity tungsten alloy targets[D].Xiamen:Xiamen University,2015.
[6] SAMPATH S,GANSERT R,HERMAN H.Plasma-spray forming ceramics and layered composites[J].JOM,1995,47(10):30-33.
[7] TULUI M,BELLUCCI A,ALBOLINO A,et al.Zinc oxide targets for magnetron sputtering PVD prepared by plasma spray[J].Surface & Coatings Technology,2010,205(4):1070-1073.
[8] DRIESSCHE I V,GEORGIOPOULOS E,DENUL J,et al.Comparison of plasma sprayed and flame sprayed YBa2Cu3O7-x targets for rotatable magnetron sputtering[J].Physica C,2002,372/376(3):1221-1224.
[9] JIN Y M,CHO J H,PARK D Y,et al.Manufacturing and macroscopic properties of cold sprayed Cu-In coating material for sputtering target[J].Journal of Thermal Spray Technology,2011,20(3):497-507.
[10] BILLIERES D,AVIGNON S S L.Process for producing a target by thermal spraying:US20120055783Al[P].2012-03-08.
[11] BILLIERES D,AVIGNON S S L.Molybdenum-based target and process for producing a target by thermal spraying:US20120063947Al[P].2012-03-15.
[12] 庄志杰.以等离子喷涂制备圆柱形大面积镀膜靶材及方法:ZL2011102562601[P].2013-07-03. ZHUANG Z J.Cylindrical large-area film coating target prepared through plasma spray coating and method:ZL2011102562601[P].2013-07-03.
[13] 扈百直,胥小勇,刘孝宁,等.一种氧化铌旋转靶材及其制备方法:ZL201210553666[P].2013-04-17. HU B Z,XU X Y,LIU X N,et al.Oxidized niobium rotatable target and its preparation method:ZL201210553666[P].2013-04-17.
[14] 梁静,林小辉.等离子喷涂技术在溅射靶材制备中的应用[J].中国钼业,2014,38(2):43-46. LIANG J,LIN X H.Application of plasma spraying technology in preparation of sputtering targets[J].China Molybdenum Industry,2014,38(2):43-46.
[15] 宋爱谋,钟小亮.超低氧含量热喷涂管靶及其制备方法:ZL201410051665[P].2014-05-07. SONG A M,ZHONG X L.Super low oxygen content thermal spraying rotatable target and its preparation method:ZL201410051665[P].2014-05-07.
[16] 高阳.超低压等离子喷涂与沉积技术的发展动态[J].热喷涂技术,2010,2(3):13-17. GAO Y.Development tendencies of the very low pressure plasma spraying and deposition technology[J].Thermal Spray Technology,2010,2(3):13-17.
[17] TOKUNAGA K,HOTTA T,ARAKI K,et al.High heat loading properties of vacuum plasma spray tungsten coatings on reduced activation ferritic/martensitic steel[J].Journal of Nuclear Materials,2013,438(Suppl 1):905-908.
[18] CHO G S,CHOE K H,CHOI S Y.Characterization of VPS-W coating layers on molybdenum after heat exposure[J].Materials Research Bulletin,2013,48(12):5053-5057.
[19] NIU Y R,ZHENG X B,HENG J,et al.Microstructure and thermal property of tungsten coatings prepared by vacuum plasma spraying technology[J].Fusion Engineering and Design,2010,85(7/9):1521-1526.
[20] NIU Y R,HU D Y,HENG J,et al.Effect of bond coatings on properties of vacuum plasma sprayed tungsten coatings on copper alloy substrate[J].Fusion Engineering and Design,2011,86(4/5):307-311.
[21] 杨震晓,刘敏,邓春明,等.低压等离子喷涂厚钨涂层的组织与性能[J].材料保护,2013,46(2):13-15. YANG Z X,LIU M,DENG C M,et al.Microstructure and properties of low pressure plasma spray thick tungsten coatings[J].Materials Protection,2013,46(2):13-15.
[22] 王跃明,陈梦华,李月,等.W-Re合金构件气氛保护等离子喷涂成形技术[J].航空材料学报,2016,36(4):24-34. WANG Y M,CHEN M H,LI Y,et al.Near-net-shape tungsten-rhenium alloy parts produced by shrouded plasma spray forming[J].Journal of Aeronautical Materials,2016,36(4):24-34.
[23] 刘仁智,孙院军,王快社,等.Mo靶材组织对溅射薄膜形貌及性能的影响[J].稀有金属材料与工程,2012,41(9):1559-1563. LIU R Z,SUN Y J,WANG K S,et al.Influence of Mo target microstructure on the morphology and properties of sputtered films[J].Rare Metal Materials and Engineering,2012,41(9):1559-1563.
[24] 许咏丽,张金权,李化青.钨靶件试样的热等静压工艺试验研究[J].原子能科学技术,2006,40(6):641-645. XU Y L,ZHANG J Q,LI H Q.Investigation of hot isostatic press process for tungsten target samples[J].Atomic Energy Science and Technology,2006,40(6):641-645.
[25] 刘仁智.钼板轧制及热处理工艺对溅射薄膜微观组织及性能的影响[J].材料导报B,2014,28(11):102-105. LIU R Z.Effect of molybdenum plate rolling process and heat treatment on sputtering films' microstructure and property[J].Materials Review B,2014,28(11):102-105.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 黄晓梦, 许佳雄. 周期性前驱体的预硫化处理对Cu2ZnSnS4薄膜的影响[J]. 材料工程, 2020, 48(3): 155-162.
[14] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn