Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 23-29    DOI: 10.11868/j.issn.1001-4381.2017.001177
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯纳米片增强铝基复合材料的动态力学行为
赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙
中国航发北京航空材料研究院, 北京 100095
Dynamic mechanical behavior of graphene nanoflakes reinforced aluminum matrix composites
ZHAO Shuang-zan, YAN Shao-jiu, CHEN Xiang, HONG Qi-hu, LI Xiu-hui, DAI Sheng-long
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6640 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用压制-烧结-热挤压工艺制备石墨烯纳米片(GNFs)增强铝基(Al)复合材料,并对其进行压缩性能测试。结果表明:GNFs/Al复合材料是应变率敏感材料,当应变率从10-3s-1提高至3×103s-1时,复合材料的强度明显提高;而当应变率继续提高至5×103s-1时,由于材料内部发生热软化,复合材料的强度反而表现出少许下降。动态压缩后复合材料中铝基体发生动态再结晶,且应变率越高,动态再结晶越显著;增强相GNFs则发生扭曲变形后仍保持完整结构且与基体间保持原子间结合。因此,GNFs/Al复合材料具有良好的动态压缩塑性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵双赞
燕绍九
陈翔
洪起虎
李秀辉
戴圣龙
关键词 石墨烯纳米片金属基复合材料力学性能应变率动态再结晶    
Abstract:Graphene nanoflakes (GNFs) reinforced aluminum matrix composites were prepared by compressing-sintering-hot extrusion process, and their compressive properties were tested. The results show that GNFs/Al composites are high strain rate sensitive materials. When the strain rate increases from 10-3s-1 to 3×103s-1, the strength of the composites increases obviously. However, when the strain rate further increases to 5×103s-1, the strength of the composites declines a little due to the internal thermal softening of the material. Dynamic recrystallization occurs in the matrix of the composites after dynamic compression, and the higher the strain rate is, the more significant the dynamic recrystallization is. At the same time, the enhanced phase GNFs remain intact and bonded with matrix in atom scale while undergo a distorted deformation. Therefore, the plasticity of graphene reinforced aluminum matrix composites under dynamic compression is excellent.
Key wordsgraphene nanoflakes    metal matrix composites    mechanical property    strain rate    dynamic recrystallization
收稿日期: 2017-09-21      出版日期: 2019-03-12
中图分类号:  TB331  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事纳米材料、磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
ZHAO Shuang-zan, YAN Shao-jiu, CHEN Xiang, HONG Qi-hu, LI Xiu-hui, DAI Sheng-long. Dynamic mechanical behavior of graphene nanoflakes reinforced aluminum matrix composites. Journal of Materials Engineering, 2019, 47(3): 23-29.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001177      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/23
[1] TJONG S C,LAU K C. Tribological behaviour of SiC particle-reinforced copper matrix composites[J]. Materials Letters,2000, 43(5/6):274-280.
[2] WEI J N,WANG D Y,XIE W J,et al. Effects of macroscopic graphite particulates on the damping behavior of Zn-Al eutectoid alloy[J]. Physics Letters A,2007,366(1/2):134-136.
[3] THAKUR S K,GAN T K,GUPTA M. Development and chara-cterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements[J]. Journal of Materials Science,2007,42(24):10040-10046.
[4] TUN K S,GUPTA M. Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3,nanocomposite[J]. Journal of Materials Science,2008,43(13):4503-4511.
[5] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
[6] GEIM A K. Graphene:status and prospects[J]. Science,2009,324(5934):1530-1534.
[7] LEE C,WEI X,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321(5887):385-388.
[8] 管仁国,连超,赵占勇,等. 石墨烯铝基复合材料的制备及其性能[J]. 稀有金属材料与工程, 2012,41(增刊2):607-611. GUAN R G,LIAN C,ZHAO Z Y,et al. Study on preparation of graphene and Al-graphene composite[J]. Rare Metal Materials and Engineering,2012,41(Suppl 2):607-611.
[9] WANG J,LI Z,FAN G,et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materi-alia, 2012, 66(8):594-597.
[10] LI Z,GUO Q,LI Z Q,et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Letters,2015,15(12):8077-8083.
[11] LI J L, XIONG Y C,WANG X D,et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling[J]. Materials Science and Engineering:A,2015,626:400-405.
[12] LI G, XIONG B W. Effects of graphene content on microstruc-tures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys and Compounds,2017,697:31-36.
[13] FENG S W, GUO Q,LI Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars[J]. Acta Materialia,2017,125:98-108.
[14] 燕绍九,杨程,洪起虎,等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014(4):1-6. YAN S J,YANG C,HONG Q H,et al. Research of graphene-reinforced aluminum matrix nanocomposites[J]. Journal of Materials Engineering,2014(4):1-6.
[15] JEON C H, JEONG Y H,SEO J J,et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing[J]. International Journal of Precision Engineering and Manufacturing,2014,15(6):1235-1239.
[16] BASTWROS M,KIM G Y,ZHU C,et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering[J]. Composites Part B:Engineering,2014,60:111-118.
[17] KUMAR H G P,XAVIOR M A. Processing and characteriz-ation of Al 6061-graphene nanocomposites[J]. Materials Today:Proceedings,2017,4(2):3308-3314.
[18] LIU G,ZHAO N Q,SHI C S, et al. In-situ synthesis of grap-hene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J].Materials Science and Engineering:A,2017,699:185-193.
[19] TIAN W M,LI S M,WANG B, et al. Graphene-reinforced alu-minum matrix composites prepared by spark plasma sintering[J]. International Journal of Minerals,Metallurgy,and Materials,2016,23(6):723-729.
[20] REN Y, WANG F C, TAN C W, et al. Shock-induced mech-anical response and spall fracture behavior of an extra-low interstitial grade Ti-6Al-4V alloy[J]. Materials Science and Engineering:A,2013,578:247-255.
[21] HONG S I,GRAY G T Ⅲ,LEWANDOWSKI J J. Dynamic deformation behavior of Al-Zn-Mg-Cu alloy matrix composites reinforced with 20 Vol.% SiC[J]. Acta Metallurgica et Materialia,1993,41(8):2337-2351.
[22] TAN Z H,PANG B J,GAI B Z,et al. The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites[J]. Materials Letters,2007,61(23):4606-4609.
[23] VAIDYA R U,SONG S G,ZUREK A K. Dynamic mechanical response and thermal expansion of ceramic particle reinforced aluminium 6061 matrix composites[J]. Philosophical Magazine A,1994,70(5):819-836.
[24] CAO F H, TIAN S Y,WANG J J,et al. Damage analysis and compression properties of aluminum-oxide particle reinforced pure aluminum at high rate of deformation[J]. Journal of Ningbo University(NSEE),2003,16(4):454-461.
[25] YADAV S, CHICHILI D R,RAMESH K T. The mechanical response of a 6061-T6 Al/Al2O3, metal matrix composite at high rates of deformation[J]. Acta Metallurgica et Materialia,1995,43(12):4453-4464.
[26] PERNG C C,HWANG J R,DOONG J L. High strain rate tensile properties of an (Al2O3, particles)-(Al alloy 6061-T6) metal matrix composite[J]. Materials Science and Engineering:A,1993,171(1/2):213-221.
[27] LIU X Q,TAN C W,ZHANG J,et al. Correlation of adiabatic shearing behavior with fracture in Ti-6Al-4V alloys with different microstructures[J]. International Journal of Impact Engineering,2009,36(9):1143-1149.
[28] 王礼立,胡时胜. 铝合金LF6R和纯铝L4R在高应变率下的动态应力应变关系[J]. 固体力学学报,1986(2):163-166. WANG L L,HU S S. Dynamic stress-strain relations of Al alloy LF6R and Al L4R under high strain rates[J]. Acta Mechanica Solida Sinica,1986(2):163-166.
[29] BAILEY J E,HIRSCH P B. The recrystallization process in some polycrystalline metals[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1962,267(1328):11-30.
[30] HU H. Recovery and recrystallization of metals[M]. New York,US:Interscience Publishing,1963:311-361.
[31] CAO D F,SHE W C,LIU L S,et al. Effect of particle size on the dynamic mechanical behaviour and deformed microstructure of SiCp/Al composites[C]//IOP Conference Series:Materials Science and Engineering. Bristol,UK:IOP Publishing Ltd,2011:202014.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[8] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[11] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[12] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[13] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[14] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[15] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn