Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 23-29    DOI: 10.11868/j.issn.1001-4381.2017.001177
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯纳米片增强铝基复合材料的动态力学行为
赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙
中国航发北京航空材料研究院, 北京 100095
Dynamic mechanical behavior of graphene nanoflakes reinforced aluminum matrix composites
ZHAO Shuang-zan, YAN Shao-jiu, CHEN Xiang, HONG Qi-hu, LI Xiu-hui, DAI Sheng-long
AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(6640 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用压制-烧结-热挤压工艺制备石墨烯纳米片(GNFs)增强铝基(Al)复合材料,并对其进行压缩性能测试。结果表明:GNFs/Al复合材料是应变率敏感材料,当应变率从10-3s-1提高至3×103s-1时,复合材料的强度明显提高;而当应变率继续提高至5×103s-1时,由于材料内部发生热软化,复合材料的强度反而表现出少许下降。动态压缩后复合材料中铝基体发生动态再结晶,且应变率越高,动态再结晶越显著;增强相GNFs则发生扭曲变形后仍保持完整结构且与基体间保持原子间结合。因此,GNFs/Al复合材料具有良好的动态压缩塑性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵双赞
燕绍九
陈翔
洪起虎
李秀辉
戴圣龙
关键词 石墨烯纳米片金属基复合材料力学性能应变率动态再结晶    
Abstract:Graphene nanoflakes (GNFs) reinforced aluminum matrix composites were prepared by compressing-sintering-hot extrusion process, and their compressive properties were tested. The results show that GNFs/Al composites are high strain rate sensitive materials. When the strain rate increases from 10-3s-1 to 3×103s-1, the strength of the composites increases obviously. However, when the strain rate further increases to 5×103s-1, the strength of the composites declines a little due to the internal thermal softening of the material. Dynamic recrystallization occurs in the matrix of the composites after dynamic compression, and the higher the strain rate is, the more significant the dynamic recrystallization is. At the same time, the enhanced phase GNFs remain intact and bonded with matrix in atom scale while undergo a distorted deformation. Therefore, the plasticity of graphene reinforced aluminum matrix composites under dynamic compression is excellent.
Key wordsgraphene nanoflakes    metal matrix composites    mechanical property    strain rate    dynamic recrystallization
收稿日期: 2017-09-21      出版日期: 2019-03-12
中图分类号:  TB331  
通讯作者: 燕绍九(1980-),男,博士,高级工程师,主要从事纳米材料、磁性材料及石墨烯应用研究工作,联系地址:北京市81信箱72分箱(100095),E-mail:shaojiuyan@126.com     E-mail: shaojiuyan@126.com
引用本文:   
赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
ZHAO Shuang-zan, YAN Shao-jiu, CHEN Xiang, HONG Qi-hu, LI Xiu-hui, DAI Sheng-long. Dynamic mechanical behavior of graphene nanoflakes reinforced aluminum matrix composites. Journal of Materials Engineering, 2019, 47(3): 23-29.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001177      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/23
[1] TJONG S C,LAU K C. Tribological behaviour of SiC particle-reinforced copper matrix composites[J]. Materials Letters,2000, 43(5/6):274-280.
[2] WEI J N,WANG D Y,XIE W J,et al. Effects of macroscopic graphite particulates on the damping behavior of Zn-Al eutectoid alloy[J]. Physics Letters A,2007,366(1/2):134-136.
[3] THAKUR S K,GAN T K,GUPTA M. Development and chara-cterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements[J]. Journal of Materials Science,2007,42(24):10040-10046.
[4] TUN K S,GUPTA M. Effect of extrusion ratio on microstructure and mechanical properties of microwave-sintered magnesium and Mg/Y2O3,nanocomposite[J]. Journal of Materials Science,2008,43(13):4503-4511.
[5] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
[6] GEIM A K. Graphene:status and prospects[J]. Science,2009,324(5934):1530-1534.
[7] LEE C,WEI X,KYSAR J W,et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008,321(5887):385-388.
[8] 管仁国,连超,赵占勇,等. 石墨烯铝基复合材料的制备及其性能[J]. 稀有金属材料与工程, 2012,41(增刊2):607-611. GUAN R G,LIAN C,ZHAO Z Y,et al. Study on preparation of graphene and Al-graphene composite[J]. Rare Metal Materials and Engineering,2012,41(Suppl 2):607-611.
[9] WANG J,LI Z,FAN G,et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materi-alia, 2012, 66(8):594-597.
[10] LI Z,GUO Q,LI Z Q,et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Letters,2015,15(12):8077-8083.
[11] LI J L, XIONG Y C,WANG X D,et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling[J]. Materials Science and Engineering:A,2015,626:400-405.
[12] LI G, XIONG B W. Effects of graphene content on microstruc-tures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys and Compounds,2017,697:31-36.
[13] FENG S W, GUO Q,LI Z, et al. Strengthening and toughening mechanisms in graphene-Al nanolaminated composite micro-pillars[J]. Acta Materialia,2017,125:98-108.
[14] 燕绍九,杨程,洪起虎,等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014(4):1-6. YAN S J,YANG C,HONG Q H,et al. Research of graphene-reinforced aluminum matrix nanocomposites[J]. Journal of Materials Engineering,2014(4):1-6.
[15] JEON C H, JEONG Y H,SEO J J,et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing[J]. International Journal of Precision Engineering and Manufacturing,2014,15(6):1235-1239.
[16] BASTWROS M,KIM G Y,ZHU C,et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering[J]. Composites Part B:Engineering,2014,60:111-118.
[17] KUMAR H G P,XAVIOR M A. Processing and characteriz-ation of Al 6061-graphene nanocomposites[J]. Materials Today:Proceedings,2017,4(2):3308-3314.
[18] LIU G,ZHAO N Q,SHI C S, et al. In-situ synthesis of grap-hene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J].Materials Science and Engineering:A,2017,699:185-193.
[19] TIAN W M,LI S M,WANG B, et al. Graphene-reinforced alu-minum matrix composites prepared by spark plasma sintering[J]. International Journal of Minerals,Metallurgy,and Materials,2016,23(6):723-729.
[20] REN Y, WANG F C, TAN C W, et al. Shock-induced mech-anical response and spall fracture behavior of an extra-low interstitial grade Ti-6Al-4V alloy[J]. Materials Science and Engineering:A,2013,578:247-255.
[21] HONG S I,GRAY G T Ⅲ,LEWANDOWSKI J J. Dynamic deformation behavior of Al-Zn-Mg-Cu alloy matrix composites reinforced with 20 Vol.% SiC[J]. Acta Metallurgica et Materialia,1993,41(8):2337-2351.
[22] TAN Z H,PANG B J,GAI B Z,et al. The dynamic mechanical response of SiC particulate reinforced 2024 aluminum matrix composites[J]. Materials Letters,2007,61(23):4606-4609.
[23] VAIDYA R U,SONG S G,ZUREK A K. Dynamic mechanical response and thermal expansion of ceramic particle reinforced aluminium 6061 matrix composites[J]. Philosophical Magazine A,1994,70(5):819-836.
[24] CAO F H, TIAN S Y,WANG J J,et al. Damage analysis and compression properties of aluminum-oxide particle reinforced pure aluminum at high rate of deformation[J]. Journal of Ningbo University(NSEE),2003,16(4):454-461.
[25] YADAV S, CHICHILI D R,RAMESH K T. The mechanical response of a 6061-T6 Al/Al2O3, metal matrix composite at high rates of deformation[J]. Acta Metallurgica et Materialia,1995,43(12):4453-4464.
[26] PERNG C C,HWANG J R,DOONG J L. High strain rate tensile properties of an (Al2O3, particles)-(Al alloy 6061-T6) metal matrix composite[J]. Materials Science and Engineering:A,1993,171(1/2):213-221.
[27] LIU X Q,TAN C W,ZHANG J,et al. Correlation of adiabatic shearing behavior with fracture in Ti-6Al-4V alloys with different microstructures[J]. International Journal of Impact Engineering,2009,36(9):1143-1149.
[28] 王礼立,胡时胜. 铝合金LF6R和纯铝L4R在高应变率下的动态应力应变关系[J]. 固体力学学报,1986(2):163-166. WANG L L,HU S S. Dynamic stress-strain relations of Al alloy LF6R and Al L4R under high strain rates[J]. Acta Mechanica Solida Sinica,1986(2):163-166.
[29] BAILEY J E,HIRSCH P B. The recrystallization process in some polycrystalline metals[J]. Proceedings of the Royal Society of London Series A-Mathematical and Physical Sciences,1962,267(1328):11-30.
[30] HU H. Recovery and recrystallization of metals[M]. New York,US:Interscience Publishing,1963:311-361.
[31] CAO D F,SHE W C,LIU L S,et al. Effect of particle size on the dynamic mechanical behaviour and deformed microstructure of SiCp/Al composites[C]//IOP Conference Series:Materials Science and Engineering. Bristol,UK:IOP Publishing Ltd,2011:202014.
[1] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[2] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[3] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[4] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[5] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[6] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[7] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[8] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[9] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[10] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[11] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[12] 李灿, 陈文琳, 雷远. 微量Sr及均匀化工艺对Al-Mg-Si-Cu-Mn变形铝合金铸态组织与性能的影响[J]. 材料工程, 2019, 47(2): 90-98.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn