Please wait a minute...
材料工程  2018, Vol. 46 Issue (9): 23-30    DOI: 10.11868/j.issn.1001-4381.2017.001182
  综述 本期目录 | 过刊浏览 | 高级检索 |
李高锋1, 李智敏1, 宁涛1, 张茂林1, 闫养希1, 向黔新2
1. 西安电子科技大学 先进材料与纳米科技学院, 西安 710071;
2. 贵州振华新材料有限公司, 贵阳 550016
Research Progress of Cathode Materials Modified by Surface Coating for Lithium Ion Batteries
LI Gao-feng1, LI Zhi-min1, NING Tao1, ZHANG Mao-lin1, YAN Yang-xi1, XIANG Qian-xin2
1. School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710071, China;
2. Guizhou Zhenhua E-chen Co., Ltd., Guiyang 550016, China
全文: PDF(2407 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 正极材料性能对锂离子电池的发展和应用有着关键作用,但是其结构相变、电导率低及电解液副反应等不利因素仍制约电池性能的进一步提高,而包覆是解决这些问题的有效手段之一。本文重点介绍表面包覆对锂离子电池正极材料性能的影响,总结了各类包覆材料的研究进展,阐述了包覆材料的改性机理,并提出正极材料包覆的未来发展趋势,包括继续寻找性能优良的包覆材料,深入探讨包覆机理,以及进一步优化包覆工艺等。
E-mail Alert
关键词 锂离子电池正极材料包覆电化学性能    
Abstract:The properties of cathode materials play an important role in the development and application for lithium ion batteries. However, their phase transition, low conductivity and side reaction with electrolyte restrict the further improvement of battery performance. Coating is one of the effective techniques to overcome these problems. This paper focuses on the influence of surface coating on the properties of cathode materials for lithium ion batteries. The research progress of various coating materials was summarized. The modification mechanism of coating materials was also elaborated. And the future development trend of coating materials was proposed, for example, exploring continuously new coating materials with excellent performance, investigating in depth coating mechanism, and optimizing further coating technologies.
Key wordslithium ion battery    cathode material    coating    electrochemical performance
收稿日期: 2017-09-21      出版日期: 2018-09-19
中图分类号:  TM912  
通讯作者: 李智敏(1976-),男,博士,教授,主要从事新能源材料与器件的研究,联系地址:陕西省西安市太白南路2号西安电子科技大学(710071),     E-mail:
李高锋, 李智敏, 宁涛, 张茂林, 闫养希, 向黔新. 锂离子电池正极材料表面包覆改性研究进展[J]. 材料工程, 2018, 46(9): 23-30.
LI Gao-feng, LI Zhi-min, NING Tao, ZHANG Mao-lin, YAN Yang-xi, XIANG Qian-xin. Research Progress of Cathode Materials Modified by Surface Coating for Lithium Ion Batteries. Journal of Materials Engineering, 2018, 46(9): 23-30.
链接本文:      或
[1] 董鹏, 张英杰, 刘嘉铭, 等. 纳米磷酸铁包覆锂离子电池正极材料LiNi0.5Co0.2Mn0.3O2的制备及其电化学性能[J]. 材料工程,2017, 45(11):49-57. DONG P, ZHANG Y J, LIU J M, et al. Fabrication and electrochemical performance of LiNi0.5Co0.2Mn0.3O2 coated with nano FePO4 as cathode material for lithium-ion batteries[J]. Journal of Materials Engineering, 2017, 45(11):49-57.
[2] GUO W, MAO F, MA J. Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes[J]. RSC Advances, 2015, 5(127):105248-105258.
[3] CHEN Z, DAHN J R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5V[J]. Electrochimica Acta, 2004, 49(7):1079-1090.
[4] KUMAR S K, GHOSH S, MARTHA S K. Synergistic effect of magnesium and fluorine doping on the electrochemical performance of lithium-manganese rich (LMR)-based Ni-Mn-Co-oxide (NMC) cathodes for lithium-ion batteries[J]. Ionics, 2017,23(7):1655-1662.
[5] LEE S W, KIM M S, JEONG J H, et al. Li3PO4 surface coating on Ni-rich LiNi0.6Co0.2Mn0.2O2 by a citric acid assisted sol-gel method:improved thermal stability and high-voltage performance[J]. Journal of Power Sources, 2017, 360:206-214.
[6] LI L, CAO Y, ZHENG H, et al. AlPO4 coated LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium batteries[J]. Journal of Materials Science:Materials in Electronics, 2017, 28(2):1925-1930.
[7] PARK J S, MANE A U, ELAM J W, et al. Atomic layer deposition of Al-W-fluoride on LiCoO2 cathodes:comparison of particle-and electrode-level coatings[J]. ACS Omega, 2017, 2(7):3724-3729.
[8] XIAO B, WANG B, LIU J, et al. Highly stable Li1.2Mn0.54Co0.13Ni0.13O2, enabled by novel atomic layer deposited AlPO4 coating[J]. Nano Energy, 2017, 34:120-130.
[9] YANO A, SHIKANO M, UEDA A, et al. LiCoO2 degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating[J]. Journal of the Electrochemical Society, 2017, 164(1):A6116-A6122.
[10] MENG H, LI L, LIU J, et al. Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn 0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries[J]. Journal of Alloys and Compounds, 2017, 690:256-266.
[11] YONG J K, CHO J, KIM T J, et al. Suppression of cobalt dissolution from the LiCoO2 cathodes with various metal-oxide coatings[J]. Journal of the Electrochemical Society, 2014, 150(12):A1723-A1725.
[12] LU J, CHEN Z, MA Z, et al. The role of nanotechnology in the development of battery materials for electric vehicles[J]. Nature Nanotechnology, 2016, 11(12):1031-1038.
[13] LI X, XU Y, WANG C. Suppression of Jahn-Teller distortion of spinel LiMn2O4 cathode[J]. Journal of Alloys and Compounds, 2009, 479(1/2):310-313.
[14] LI C, ZHANG H P, FU L J, et al. Cathode materials modified by surface coating for lithium ion batteries[J]. Electrochimica Acta, 2006, 51(19):3872-3883.
[15] ZHANG C, SHEN L, LI H, et al. Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries[J]. Journal of Electroanalytical Chemistry, 2016, 762:1-6.
[16] LEE Y S, SHIN W K, KANNAN A G, et al. Improvement of the cycling performance and thermal stability of lithium-ion cells by double-layer coating of cathode materials with Al2O3 nanoparticles and conductive polymer[J]. ACS Applied Materials & Interfaces, 2015, 7(25):13944-13951.
[17] HE X, DU C. Electronically conductive Sb-doped SnO2 nanoparticles coated LiNi0.8Co0.15Al0.05O2 cathode material with enhanced electrochemical properties for Li-ion batteries[J]. Electrochimica Acta, 2017, 236:273-279.
[18] TAO S, KONG F, WU C, et al. Nanoscale TiO2 membrane coating spinel LiNi0.5Mn1.5O4 cathode material for advanced lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 705:413-419.
[19] KUMAR A, NAZZARIO R, TORES-CASTRO L, et al. Electrochemical properties of MgO-coated 0.5Li 2MnO3-0.5LiNi0.5Mn0.5O2 composite cathode material for lithium ion battery[J]. International Journal of Hydrogen Energy, 2015, 40(14):4931-4935.
[20] SAROHA R, JAIN A,PANWAR A K. Effect of ZnO coating on physicochemical properties of LiFePO4 cathode material for lithium ion batteries[J]. Advanced Materials Proceedings, 2016,1(1):104-108.
[21] ZHOU P, ZHANG Z, MENG H, et al. SiO2-coated LiNi0.915Co0.075Al0.01O2 cathode material for rechargeable Li-ion batteries[J]. Nanoscale, 2016, 8(46):19263-19269.
[22] MYUNG S T, IZUMI K, KOMABA S, et al. Role of alumina coating on Li-Ni-Co-Mn-O particles as positive electrode material for lithium-ion batteries[J]. Chemistry of Materials, 2005, 17(14):3695-3704.
[23] KAWAMURA T, OKADA S, YAMAKI J. Decomposition reaction of LiPF6-based electrolytes for lithium ion cells[J]. Journal of Power Sources, 2006, 156(2):547-554.
[24] AYKOL M, KIRKLIN S, WOLVERTON C. Thermodynamic aspects of cathode coatings for lithium-ion batteries[J]. Advanced Energy Materials, 2014, 4(17):6832-6840.
[25] PARK J S, MANE A U, ELAM J W, et al. Amorphous metal fluoride passivation coatings prepared by atomic layer deposition on LiCoO2 for Li-ion batteries[J]. Chemistry of Materials, 2015, 27(6):1917-1920.
[26] YUE P, WANG Z, LI X, et al. The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution[J]. Electrochimica Acta, 2013, 95(11):112-118.
[27] ZHU Z, CAI F, YU J. Improvement of electrochemical performance for AlF3[J]. Ionics, 2016, 22(8):1353-1359.
[28] CHEN L, YANG Y, WANG Z, et al. Enhanced electrochemical performances and thermal stability of LiNi1/3Co1/3Mn1/3O2 by surface modification with YF3[J]. Journal of Alloys and Compounds, 2017, 711:462-472.
[29] LI C D, YAO Z L, XU J, et al. Surface-modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 nanoparticles with LaF3 as cathode for Li-ion battery[J]. Ionics, 2017, 23(3):549-558.
[30] KRAYTSBERG A, DREZNER H, AUINAT M, et al. Atomic layer deposition of a particularized protective MgF2 film on a Li-ion battery LiMn1.5Ni0.5O4 cathode powder material[J]. Chem Nano Mat, 2015, 1(8):577-585.
[31] LIU X, LIU J, HUANG T, et al. CaF2-coated Li1.2MnNi0.13Co0.13O2 as cathode materials for Li-ion batteries[J]. Electrochimica Acta,2013,109:52-58.
[32] SUN Y K, LEE M J, YOON C S, et al. The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries[J]. Advanced Materials, 2012, 24(9):1192-1196.
[33] KE X, ZHAO Z, LIU J, et al. Improvement in capacity retention of cathode material for high power density lithium ion batteries:the route of surface coating[J]. Applied Energy, 2017, 194:540-548.
[34] JUNG H, SONG H, KIM T, et al. FeF3 microspheres anchored on reduced graphene oxide as a high performance cathode material for lithium ion batteries[J]. Journal of Alloys and Compounds, 2015, 647:750-755.
[35] ZHAO T, LI L, CHEN R, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries[J]. Nano Energy, 2015, 15:164-176.
[36] LI C D, XU J, XIA J S, et al. Influences of FeF3 coating layer on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries[J]. Solid State Ionics, 2016, 292:75-82.
[37] ZHANG L L, CHEN J J, CHENG S, et al. Enhanced electrochemical performances of Li1.2Ni0.2 Mn0.6O2 cathode materials by coating LiAlO2 for lithium-ion batteries[J]. Ceramics International, 2016, 42(1):1870-1878.
[38] LEUNG K, QI Y, ZAVADIL K R, et al. Using atomic layer deposition to hinder solvent decomposition in lithium ion batteries:first-principles modeling and experimental studies[J]. Journal of the American Chemical Society, 2011, 133(37):14741-14754.
[39] ROBERTSON A D, WEST A R, RITCHIE A G. Review of crystalline lithium-ion conductors suitable for high temperature battery applications[J]. Solid State Ionics, 1997, 104(1/2):1-11.
[40] KONG J Z, REN C, JIANG Y X, et al. Li-ion-conductive Li2TiO3-coated Li[Li0.2Mn0.51Ni0. 19Co0.1]O2 for high-performance cathode material in lithium-ion battery[J]. Journal of Solid State Electrochemistry, 2016, 20(5):1435-1443.
[41] LIU S, WU H, HUANG L, et al. Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2016, 674:447-454.
[42] FENG X, ZHANG J, YIN L. Enhanced cycling stability of Co3(PO4)2-coated LiMn2O4 cathode materials for lithium ion batteries[J]. Powder Technology, 2016, 287:77-81.
[43] WANG Z, LIU E, HE C, et al. Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries[J]. Journal of Power Sources, 2013, 236:25-32.
[44] WU F, ZHANG X, ZHAO T, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(6):3773-3781.
[45] GU Z, UETSUKA H, TAKAHASHI K, et al. Cover picture:structural color and the lotus effect[J]. Angewandte Chemie International Edition, 2003, 42(8):863-863.
[46] CAO Q, ZHANG H P, WANG G J, et al. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery[J]. Electrochemistry Communications, 2007, 9(5):1228-1232.
[47] LEE S, CHO Y, SONG H K, et al. Carbon-coated single-crystal LiMn2O4 nanoparticle clusters as cathode material for high-energy and high-power lithium-ion batteries[J]. Angewandte Chemie International Edition, 2012, 51(35):8748-8752.
[48] NOEROCHIM L, YURWENDRA A O, SUSANTI D. Effect of carbon coating on the electrochemical performance of LiFePO4/C as cathode materials for aqueous electrolyte lithium-ion battery[J]. Ionics, 2016, 22(3):341-346.
[49] ZHOU X, WANG F, ZHU Y, et al. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries[J]. Journal of Materials Chemistry, 2011, 21(10):3353-3358.
[50] GÖKTEPE H, ?AHAN H, PATAT ?. Effect of silver and carbon double coating on the electrochemical performance of LiFePO4 cathode material for lithium ion batteries[J]. International Journal of Hydrogen Energy, 2016, 41(23):9774-9779.
[51] SUN P, MA Y, ZHAI T, et al. High performance LiNi0.5Mn1.5O4 cathode by Al-coating and Al3+-doping through a physical vapor deposition method[J]. Electrochimica Acta, 2016, 191:237-246.
[52] PARK K S, SON J T, CHUNG H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4[J]. Solid State Communications, 2004, 129(5):311-314.
[53] ARREBOLA J, CABALLERO A, ERNAN L, et al. Effects of coating with gold on the performance of nanosized LiNi0.5Mn1.5O4 for lithium batteries[J]. Journal of the Electrochemical Society, 2007,154:A178-A184.
[54] EDDRIEF M, DZWONKOWSKI P, JULIEN C, et al. The ac conductivity in B2O3-Li2O films[J]. Solid State Ionics, 1991, 45(1/2):77-82.
[1] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[2] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[3] 巩桂芬, 徐阿文, 邹明贵, 邢韵, 辛浩. EVOH-SO3Li/P(VDF-HFP)/HAP锂离子电池隔膜的制备及电化学性能[J]. 材料工程, 2020, 48(5): 75-82.
[4] 刘乐浩, 莫金珊, 李美成, 赵廷凯, 李铁虎, 王大为. 纳米颗粒的自组装及其在锂离子电池中的应用[J]. 材料工程, 2020, 48(4): 15-24.
[5] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[6] 蔺佳明, 赵桃林, 王育华. Li2ZrO3包覆锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2的制备及其电化学性能[J]. 材料工程, 2020, 48(3): 112-120.
[7] 许剑轶, 张国芳, 胡峰, 王瑞芬, 寇勇, 张胤. La-Mg-Ni系A5B19超晶格负极材料相结构及电化学性能[J]. 材料工程, 2020, 48(2): 46-52.
[8] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[9] 陈德鑫, 李智敏, 李高锋, 张茂林, 张东岩, 闫养希. Mg2+掺杂对Li1.2Mn0.6Ni0.2O2正极材料性能的影响[J]. 材料工程, 2020, 48(10): 157-162.
[10] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[11] 马敬玉, 杨凯淇, 张敏, 杨晗, 马晓燕. POSS-(PMMA46)8浸渍涂覆商业PP隔膜的结构与性能[J]. 材料工程, 2019, 47(9): 116-122.
[12] 黄贤凯, 邵泽超, 常增花, 王建涛. 导电炭黑对富锂锰基层状氧化物电极性能的影响[J]. 材料工程, 2019, 47(8): 13-21.
[13] 赵斌, 张芮境, 申倩倩, 王羿, 薛晋波, 张爱琴, 贾虎生. TiO2纳米管阵列基底退火温度对CdSe/TiO2异质结薄膜光电化学性能的影响[J]. 材料工程, 2019, 47(8): 90-96.
[14] 刘喜山, 曹博, 纪文斐, 孙军, 张胜. 二维层状无机物/硼酸锌复合体系对聚苯乙烯泡沫阻燃性能的影响[J]. 材料工程, 2019, 47(6): 101-107.
[15] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
Full text



版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持