Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 1-11    DOI: 10.11868/j.issn.1001-4381.2017.001194
  综述 本期目录 | 过刊浏览 | 高级检索 |
先进热管理材料研究进展
何鹏1, 耿慧远1,2
1. 哈尔滨工业大学 先进焊接与连接国家重点实验室, 哈尔滨 150001;
2. 郑州机械研究所, 郑州 450001
Research Progress of Advanced Thermal Management Materials
HE Peng1, GENG Hui-yuan1,2
1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China;
2. Zhengzhou Research Institute of Mechanical Engineering, Zhengzhou 450001, China
全文: PDF(3434 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 热管理系统广泛应用于国民经济以及国防等各个领域,控制着系统中热的分散、存储与转换。先进的热管理材料构成了热管理系统的物质基础,而热传导率则是所有热管理材料的核心技术指标。本文针对先进热管理材料的应用、种类以及其中热传导的物理机制等关键问题进行了综述。重点介绍了热界面材料、高导热封装材料、蓄热材料以及热电材料等的研究进展及存在的问题。对均质及复合材料中的热传导机制进行归纳,并指出分子动力学、密度泛函理论及大规模并行计算技术将在揭示多尺度的热传输机制方面发挥越来越重要的作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何鹏
耿慧远
关键词 热管理热界面材料高导热封装材料蓄热材料热电材料热导率    
Abstract:Thermal management systems, controlling the dispersion, storage and conversion of heat, were widely used in various fields of national economy and defence applications etc. Advanced thermal management materials form the material basis of the thermal management system, while the thermal conductivity was the critical property of all the thermal management materials. The application, classification, and physical mechanism of heat conduction of advanced thermal management materials were reviewed in this paper. The research progress and existing problems of thermal interface materials, high thermal conductivity packaging materials, thermal storage materials and thermoelectric materials were introduced. It is pointed out that molecular dynamics, density functional theory and large-scale parallel computing technology will play increasingly import roles in revealing the multi-scale heat transfer mechanism in the homogeneous and composite materials.
Key wordsthermal management    thermal interface material    high thermal conductivity packaging material    heat storage material    thermoelectric material    thermal conductivity
收稿日期: 2017-09-23      出版日期: 2018-04-14
中图分类号:  TB303  
通讯作者: 耿慧远(1978-),男,博士,副研究员,研究方向为先进能源材料的近平衡输运理论,密度泛函理论计算及材料极端非平衡制备方法,E-mail:genghuiyuan@hit.edu.cn     E-mail: genghuiyuan@hit.edu.cn
引用本文:   
何鹏, 耿慧远. 先进热管理材料研究进展[J]. 材料工程, 2018, 46(4): 1-11.
HE Peng, GENG Hui-yuan. Research Progress of Advanced Thermal Management Materials. Journal of Materials Engineering, 2018, 46(4): 1-11.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001194      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/1
[1] MOORE A L,SHI L.Emerging challenges and materials for thermal management of electronics[J].Materials Today,2014,17(4):163-174.
[2] CHIARA F,CANOVA M.A review of energy consumption, management, and recovery in automotive systems, with considerations of future trends[J].Proceedings of the Institution of Mechanical Engineers,Part D:Journal of Automobile Engineering,2013,227(6):914-936.
[3] LIU H,WEI Z,HE W,et al.Thermal issues about Li-ion batteries and recent progress in battery thermal management systems:a review[J]. Energy Conversion and Management,2017,150:304-330.
[4] POP E,SINHA S,GOODSON K E.Heat generation and transport in nanometer-scale transistors[J].Proceedings of the IEEE,2006,94(8):1587-1601.
[5] MAHAJAN R,CHIU C,CHRYSLER G.Cooling a microprocessor chip[J].Proceedings of the IEEE,2006,94(8):1476-1486.
[6] HAMANN H F,WEGER A,LACEY J A,et al.Hotspot-limited microprocessors:direct temperature and power distribution measurements[J].IEEE Journal of Solid-State Circuits,2007,42(1):56-65.
[7] WAGNER J R,GHONE M C,DAWSON D W,et al.SAE international,2002.coolant flow control strategies for automotive thermal management systems[R].Warrendale,PA,USA:SAE International,2002.
[8] MALLIK S,EKERE N,BEST C,et al.Investigation of thermal management materials for automotive electronic control units[J].Applied Thermal Engineering,2011,31(2):355-362.
[9] 于莹潇,袁兆成,田佳林,等.现代汽车热管理系统研究进展[J].汽车技术,2009(8):1-7. YU Y X,YUAN Z C,TIAN J L,et al.Research progress of modern vehicle thermal management system(VTMS)[J].Automobile Technology,2009(8):1-7.
[10] SNYDER G J,TOBERER E S.Complex thermoelectric materials[J].Nature Materials,2008,7(2):105-114.
[11] LAJUNEN A,HADDEN T,HIRMIZ R,et al.Thermal energy storage for increasing heating performance and efficiency in electric vehicles[C]//2017 IEEE Transportation Electrification Conference and Expo(ITEC).Harbin,2017:95-100.
[12] LEONG K Y,SAIDUR R,KAZI S N,et al.Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator)[J].Applied Thermal Engineering,2010,30(17):2685-2692.
[13] KIM E,SHIN K G,LEE J.Real-time battery thermal management for electric vehicles[C]//2014 ACM/IEEE International Conference on Cyber-Physical Systems(ICCPS).Berlin,Germany,2014:72-83.
[14] KIM E,LEE J,SHIN K G.Modeling and real-time scheduling of large-scale batteries for maximizing performance[C]//2015 IEEE Real-Time Systems Symposium.San Antonio,Texas,USA,2015:33-42.
[15] LOPEZ-SANZ J,OCAMPO-MARTINEZ C,ALVAREZ-FLOREZ J,et al.Nonlinear model predictive control for thermal management in plug-in hybrid electric vehicles[J].IEEE Transactions on Vehicular Technology,2017,66(5):3632-3644.
[16] YANG Z,ZHOU L,LUO W,et al.Thermally conductive,dielectric PCM-boron nitride nanosheet composites for efficient electronic system thermal management[J].Nanoscale,2016,8(46):19326-19333.
[17] PRASHER R.Thermal interface materials:historical perspective,status,and future directions[J].Proceedings of the IEEE,2006,94(8):1571-1586.
[18] LEMMON E W,JACOBSEN R T.Viscosity and thermal conductivity equations for nitrogen,oxygen,argon,and air[J].International Journal of Thermophysics,2004,25(1):21-69.
[19] SARVAR F,WHALLEY D C,CONWAY P P.Thermal interface materials-a review of the state of the art[C]//20061st Electronic System Integration Technology Conference.Dresden,Germany,2006:1292-1302.
[20] DUE J,ROBINSON A J.Reliability of thermal interface materials:a review[J].Applied Thermal Engineering,2013,50(1):455-463.
[21] HANSSON J,NILSSON T M J,YE L,et al.Novel nanostructured thermal interface materials:a review[J].International Materials Reviews,2017(37):1-24.
[22] HU Y,DU G,CHEN N.A novel approach for Al2O3/epoxy composites with high strength and thermal conductivity[J].Composites Science and Technology,2016,124:36-43.
[23] YU H,LI L,KIDO T,et al.Thermal and insulating properties of epoxy/aluminum nitride composites used for thermal interface material[J].J Appl Polym Sci,2012,124(1):669-677.
[24] WANG W X,LU X,LIU J,et al.New nano-thermal interface materials (nano-TIMs) with SiC nano-particles used for heat removal in electronics packaging applications[C]//2006 International Conference on Electronic Materials and Packaging.Hong Kong,2006:1-5.
[25] HOU J,LI G,YANG N,et al.Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity[J].RSC Advances,2014,4(83):44282-44290.
[26] ZHANG K,CHAI Y,YUEN M M F,et al.Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling[J].Nanotechnology,2008,19(21):215706.
[27] HANSSON J,ZANDÉN C,YE L,et al.Review of current progress of thermal interface materials for electronics thermal management applications[C]//2016 IEEE 16th International Conference on Nanotechnology(IEEE-NANO).Sendai,Japan,2016:371-374.
[28] TONG X C.Advanced materials for thermal management of electronic packaging; springer series in advanced microelectronics[M].Springer:New York,2011:30.
[29] 李志强,谭占秋,范根莲,等.高效热管理用金属基复合材料研究进展[J].中国材料进展,2013,32(7):431-440. LI Z Q,TAN Z Q,FAN G L,et al.Progress of metal matrix composites for efficient thermal management applications[J].Materials China,2013,32(7):431-440.
[30] CHEN H,GINZBURG V V,YANG J,et al.Thermal conductivity of polymer-based composites:fundamentals and applications[J].Progress in Polymer Science,2016,59:41-85.
[31] KIM G H,LEE D,SHANKER A,et al.High thermal conductivity in amorphous polymer blends by engineered interchain interactions[J].Nature Materials,2015,14(3):295-300.
[32] CHOY C L.Thermal conductivity of polymers[J].Polymer,1977,18(10):984-1004.
[33] SHEN S,HENRY A,TONG J,et al.Polyethylene nanofibres with very high thermal conductivities[J].Nature Nanotech,2010,5(4):251-255.
[34] HENRY A,CHEN G.High thermal conductivity of single polyethylene chains using molecular dynamics simulations[J].Phys Rev Lett,2008,101(23):235502-235505.
[35] HENRY A,CHEN G,PLIMPTON S J,et al.1D-to-3D transition of phonon heat conduction in polyethylene using molecular dynamics simulations[J].Phys Rev B,2010,82(14):144308.
[36] 曾婧,彭超群,王日初,等.电子封装用金属基复合材料的研究进展[J].中国有色金属学报,2015,25(12):3255-3270. ZENG J,PENG C Q,WANG R C,et al.Research and development of metal matrix composites for electronic packaging[J].2015,25(12):3255-3270.
[37] ZWEBEN C.Metal-matrix composites for electronic packaging[J].JOM,1992,44(7):15-23.
[38] HASSELMAN D P H,DONALDSON K Y,GEIGER A L.Effect of reinforcement particle size on the thermal conductivity of a particulate-silicon carbide-reinforced aluminum matrix composite[J].Journal of the American Ceramic Society,1992,75(11):3137-3140.
[39] MOLINA J M,SARAVANAN R A,ARPON R,et al.Pressure infiltration of liquid aluminium into packed SiC particulate with a bimodal size distribution[J].Acta Matallurgica,2002,50(2):247-257.
[40] SCHUBERT T,CIUPI NSKI L,ZIELI NSKI W,et al.Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J].Scripta Materialia,2008,58(4):263-266.
[41] SCHUBERT T,TRINDADE B,WEIßGÄRBER T,et al.Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J].Materials Science and Engineering:A,2008,475(1):39-44.
[42] TAVANGAR R,MOLINA J M,WEBER L.Assessing predictive schemes for thermal conductivity against diamond-reinforced silver matrix composites at intermediate phase contrast[J].Scripta Materialia,2007,56(5):357-360.
[43] ZALBA B,MARIÍN J M,CABEZA L F,et al.Review on thermal energy storage with phase change:materials,heat transfer analysis and applications[J].Applied Thermal Engineering,2003,23(3):251-283.
[44] XIAO M,FENG B,GONG K.Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity[J].Energy Conversion and Management,2002,43(1):103-108.
[45] YU S,WANG X,WU D.Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability:synthesis,microstructure,and performance evaluation[J].Applied Energy,2014,114:632-643.
[46] MORTAZAVI B,YANG H,MOHEBBI F,et al.Graphene or h-BN paraffin composite structures for the thermal management of Li-ion batteries:a multiscale investigation[J].Applied Energy,2017,202:323-334.
[47] FANG X,FAN L W,DING Q,et al.Thermal energy storage performance of paraffin-based composite phase change materials filled with hexagonal boron nitride nanosheets[J].Energy Conversion and Management,2014,80:103-109.
[48] ZEBARJADI M.Electronic cooling using thermoelectric devices[J].Applied Physics Letters,2015,106(20):203506.
[49] KUMAR S,HEISTER S D,XU X,et al.Thermoelectric generators for automotive waste heat recovery systems part I:numerical modeling and baseline model analysis[J].Journal of Electronic Materials,2013,42(4):665-674.
[50] KUMAR S,HEISTER S D,XU X,et al.Thermoelectric generators for automotive waste heat recovery systems part Ⅱ:parametric evaluation and topological studies[J].Journal of Electronic Materials,2013,42(6):944-955.
[51] ZHU T,LIU Y,FU C,et al.Compromise and synergy in high-efficiency thermoelectric materials[J].Advanced Materials,2017,29(14):1605884.
[52] POUDEL B,HAO Q,MA Y,et al.High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys[J].Science,2008,320(5876):634-638.
[53] 郭强,李志强,赵蕾,等.金属材料的构型复合化[J].中国材料进展,2016,35(9):641-650. GUO Q,LI Z Q,ZHAO L,et al.Metal matrix composites with microstructural architectures[J].Materials China,2016,35(9):641-650.
[54] FRANZ R,WIEDEMANN G.Ueber die wärme-leitungsfähigkeit der metalle[J].Annalen der Physik,1853,165(8):497-531.
[55] TRITT T M.Thermal conductivity:theory,properties,and applications[M].Berlin:Springer,2005.
[56] PEIERLS R.Zur kinetischen theorie der wärmeleitung in kristallen[J].Annalen der Physik,1929,395(8):1055-1101.
[57] CALLAWAY J.Model for lattice thermal conductivity at low temperatures[J].Physical Review,1959,113(4):1046-1051.
[58] KLEMENS P G.The thermal conductivity of dielectric solids at low temperatures (theoretical)[J].Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,1951,208(1092):108-133.
[59] BARONI S,De GIRONCOLI S,DAL C A,et al.Phonons and related crystal properties from density-functional perturbation theory[J].Reviews of Modern Physics,2001,73(2):515-562.
[60] MARADUDIN A A,FEIN A E,VINEYARD G H.On the evaluation of phonon widths and shifts[J].Physica Status Solidi (B),1962,2(11):1479-1492.
[61] DEINZER G,BIRNER G,STRAUCH D.Ab initio calculation of the linewidth of various phonon modes in germanium and silicon[J].Physical Review B,2003,67(14):144304.
[62] LINDSAY L,BROIDO D A,REINECKE T L.First-principles determination of ultrahigh thermal conductivity of boron arsenide:a competitor for diamond?[J].Physical Review Letters,2013,111(2):025901.
[63] BROIDO D A,LINDSAY L,REINECKE T L.Ab initio study of the unusual thermal transport properties of boron arsenide and related materials[J].Physical Review B,2013,88(21):214303.
[64] HASHIN Z,SHTRIKMAN S.A variational approach to the theory of the elastic behaviour of multiphase materials[J].Journal of the Mechanics and Physics of Solids,1963,11(2):127-140.
[65] STROUD D.Generalized effective-medium approach to the conductivity of an inhomogeneous material[J].Physical Review B,1975,12(8):3368-3373.
[66] BRUGGEMAN D A.G.Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen:I dielektrizitäts-konstanten und leitfähigkeiten der mischkörper aus isotropen substanzen[J].Annalen der Physik,1935,416(7):636-664.
[67] LANDAUER R.The electrical resistance of binary metallic mixtures[J].Journal of Applied Physics,1952,23(7):779-784.
[68] GARNETT M J C.Colours in metal glasses,in metallic films,and in metallic solutions:Ⅱ[J].Philosophical Transactions of the Royal Society of London.Series A,1906,205:237-288.
[69] STAUFFER D.Introduction to percolation theory[J].Taylor & Francis,1985,40(1):122.
[70] KIRKPATRICK S.Percolation and conduction[J].Reviews of Modern Physics,1973,45(4):574-588.
[71] McLACHLAN D S.Equations for the conductivity of macroscopic mixtures[J].Journal of Physics C:Solid State Physics,2000,19(9):1339-1354.
[72] ZHANG X,YUEN M M F.High performance electrical conductive composites with ultralow percolation threshold[C]//201415th International Conference on Electronic Packaging Technology.Chengdu,2014:306-309.
[73] HASSELMAN D P H,JOHNSON L F.Effective thermal conductivity of composites with interfacial thermal barrier resistance[J].Journal of Composite Materials,1987,21(6):508-515.
[74] MONACHON C,WEBER L,DAMES C.Thermal boundary conductance:a materials science perspective[J].Annual Review of Materials Research,2016,46(1):433-463.
[75] HOPKINS P E.Thermal transport across solid interfaces with nanoscale imperfections:effects of roughness,disorder,dislocations,and bonding on thermal boundary conductance[J].ISRN Mechanical Engineering,2013:1-19.
[76] YU J,HUANG X,WU C,et al.Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties[J].Polymer,2012,53(2):471-480.
[1] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[2] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[3] 陈颖, 姜庆辉, 辛集武, 李鑫, 孙兵杨, 杨君友. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10.
[4] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[5] 孙川, 邱学青, 覃发梅, 丁子先, 方志强. 六方氮化硼的液相剥离及其在电子器件热管理应用的研究进展[J]. 材料工程, 2019, 47(12): 21-32.
[6] 于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
[7] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[8] 姜贵文, 黄菊花. 膨胀石墨/石蜡复合材料的制备及热管理性能[J]. 材料工程, 2017, 45(7): 41-47.
[9] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面改性对SiCp/Cu复合材料热物理性能的影响[J]. 材料工程, 2016, 44(8): 11-16.
[10] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[11] 刘菁伟, 杨文彬, 谢长琼, 张凯, 范敬辉. HDPE/EG/石蜡导热定形相变材料的制备及性能[J]. 材料工程, 2015, 43(4): 42-46.
[12] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面设计对Sip/Al复合材料组织和性能的影响[J]. 材料工程, 2014, 0(8): 61-66.
[13] 段远源, 于海童, 王晓东, 赵俊杰. 含水量及相关散射对气凝胶辐射传热的影响[J]. 材料工程, 2014, 0(2): 65-69.
[14] 李光珠, 沈燕侠, 詹茂盛. 芳香族聚酰亚胺泡沫的隔热性能研究[J]. 材料工程, 2009, 0(7): 43-46.
[15] 龚晓钟, 汤皎宁, 李均钦, 梁文涛. 非水体系电沉积稀土填充半导体热电材料Bi2Sb3Lax及其电性能研究[J]. 材料工程, 2008, 0(5): 29-33,38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn